204 research outputs found

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    HETEROGENEOUS MULTI-SENSOR FUSION FOR 2D AND 3D POSE ESTIMATION

    Get PDF
    Sensor fusion is a process in which data from different sensors is combined to acquire an output that cannot be obtained from individual sensors. This dissertation first considers a 2D image level real world problem from rail industry and proposes a novel solution using sensor fusion, then proceeds further to the more complicated 3D problem of multi sensor fusion for UAV pose estimation. One of the most important safety-related tasks in the rail industry is an early detection of defective rolling stock components. Railway wheels and wheel bearings are two components prone to damage due to their interactions with the brakes and railway track, which makes them a high priority when rail industry investigates improvements to current detection processes. The main contribution of this dissertation in this area is development of a computer vision method for automatically detecting the defective wheels that can potentially become a replacement for the current manual inspection procedure. The algorithm fuses images taken by wayside thermal and vision cameras and uses the outcome for the wheel defect detection. As a byproduct, the process will also include a method for detecting hot bearings from the same images. We evaluate our algorithm using simulated and real data images from UPRR in North America and it will be shown in this dissertation that using sensor fusion techniques the accuracy of the malfunction detection can be improved. After the 2D application, the more complicated 3D application is addressed. Precise, robust and consistent localization is an important subject in many areas of science such as vision-based control, path planning, and SLAM. Each of different sensors employed to estimate the pose have their strengths and weaknesses. Sensor fusion is a known approach that combines the data measured by different sensors to achieve a more accurate or complete pose estimation and to cope with sensor outages. In this dissertation, a new approach to 3D pose estimation for a UAV in an unknown GPS-denied environment is presented. The proposed algorithm fuses the data from an IMU, a camera, and a 2D LiDAR to achieve accurate localization. Among the employed sensors, LiDAR has not received proper attention in the past; mostly because a 2D LiDAR can only provide pose estimation in its scanning plane and thus it cannot obtain full pose estimation in a 3D environment. A novel method is introduced in this research that enables us to employ a 2D LiDAR to improve the full 3D pose estimation accuracy acquired from an IMU and a camera. To the best of our knowledge 2D LiDAR has never been employed for 3D localization without a prior map and it is shown in this dissertation that our method can significantly improve the precision of the localization algorithm. The proposed approach is evaluated and justified by simulation and real world experiments

    An integrated solution based irregular driving detection

    No full text
    Global Navigation Satellite Systems (GNSS) are used widely in the provision of Intelligent Transport System (ITS) services. Today, metre-level positioning accuracy, which is required for many applications including route guidance, fleet management and traffic control can be fulfilled by GNSS-based systems. Because of this level of success and potential, there is an increasing demand for GNSS to support applications with more stringent positioning requirements. These include safety related applications that require centimetre/decimetre level positioning accuracy, with high integrity, continuity and availability such as lane control, collision avoidance and intelligent speed assistance. Detecting lane level irregular driving behaviour is the basic requirement for lane level ITS applications.Currently, some research has addressed road level irregular driving detection, however very little research has been done in lane level irregular driving detection. The two major issues involved in the lane level irregular driving identification are access to high accuracy positioning and vehicle dynamic parameters, and extraction of erratic driving behaviour from this and the lane related information.This thesis proposes an integrated solution for the detection of lane level irregular driving behaviour. Access to high accuracy positioning is enabled by GPS and its integration with an Inertial Navigation System (INS) using Extended Kalman Filtering (EKF) and Particle Filtering (PF) with precise vehicle motion models and lane centre line information. Four motion models are used in this thesis: Constant Velocity (CV), Constant Acceleration (CA), Constant Turn Rate and Velocity (CTRV) and Constant Turn Rate and Acceleration (CTRA). The CV and CA models are used on straight lanes and the CTRV and CTRA models on curved lanes. Lane centre line information is extracted from defined lane coordinates in the simulation and is surveyed and stored as sets of positioning points from the motorway in the field test. The high accuracy vehicle positioning and dynamic parameters include yaw rate (omega) and lateral displacement (d) in addition to conventional navigation parameters such as position, velocity and acceleration. The detection of irregular driving behaviour is achieved by comparing the sorting rules of a driving classification indicator from the filter estimations with what is extracted from the reference. The detected irregular driving styles are characterized by weaving, swerving, jerky driving and normal driving on straight and curved lanes, based on the Fuzzy Inference System (FIS). The solution proposed in the thesis has been tested by simulation and validated by real field data. The simulation results show that different types of lane level irregular driving behaviour can be correctly identified by the algorithms developed in this thesis. This is confirmed by the application of data from a field test during which the dynamics of an instrumented vehicle supplied by Imperial College London were captured in real time. The results show that the precise positioning algorithms developed can improve the accuracy of GPS positioning and that the FIS based irregular driving detection algorithms can detect the different types of irregular driving. The evaluation of the designed integrated systems in the field test shows that a positioning accuracy of 0.5m (95%) source is required for lane level irregular driving detection, with a correct detection rate of 95% and availability of 94% based on a 1s output rate. This is useful for many safety related applications including lane departure warnings and collision avoidance.Open Acces

    NASA thesaurus. Volume 2: Access vocabulary

    Get PDF
    The Access Vocabulary, which is essentially a permuted index, provides access to any word or number in authorized postable and nonpostable terms. Additional entries include postable and nonpostable terms, other word entries, and pseudo-multiword terms that are permutations of words that contain words within words. The Access Vocabulary contains 40,738 entries that give increased access to the hierarchies in Volume 1 - Hierarchical Listing

    NASA thesaurus. Volume 2: Access vocabulary

    Get PDF
    The access vocabulary, which is essentially a permuted index, provides access to any word or number in authorized postable and nonpostable terms. Additional entries include postable and nonpostable terms, other word entries and pseudo-multiword terms that are permutations of words that contain words within words. The access vocabulary contains almost 42,000 entries that give increased access to the hierarchies in Volume 1 - Hierarchical Listing

    Contributions to Positioning Methods on Low-Cost Devices

    Get PDF
    Global Navigation Satellite System (GNSS) receivers are common in modern consumer devices that make use of position information, e.g., smartphones and personal navigation assistants. With a GNSS receiver, a position solution with an accuracy in the order of five meters is usually available if the reception conditions are benign, but the performance degrades rapidly in less favorable environments and, on the other hand, a better accuracy would be beneficial in some applications. This thesis studies advanced methods for processing the measurements of low-cost devices that can be used for improving the positioning performance. The focus is on GNSS receivers and microelectromechanical (MEMS) inertial sensors which have become common in mobile devices such as smartphones. First, methods to compensate for the additive bias of a MEMS gyroscope are investigated. Both physical slewing of the sensor and mathematical modeling of the bias instability process are considered. The use of MEMS inertial sensors for pedestrian navigation indoors is studied in the context of map matching using a particle filter. A high-sensitivity GNSS receiver is used to produce coarse initialization information for the filter to decrease the computational burden without the need to exploit local building infrastructure. Finally, a cycle slip detection scheme for stand-alone single-frequency GNSS receivers is proposed. Experimental results show that even a MEMS gyroscope can reach an accuracy suitable for North seeking if the measurement errors are carefully modeled and eliminated. Furthermore, it is seen that even a relatively coarse initialization can be adequate for long-term indoor navigation without an excessive computational burden if a detailed map is available. The cycle slip detection results suggest that even small cycle slips can be detected with mass-market GNSS receivers, but the detection rate needs to be improved

    Wide-Area Surveillance System using a UAV Helicopter Interceptor and Sensor Placement Planning Techniques

    Get PDF
    This project proposes and describes the implementation of a wide-area surveillance system comprised of a sensor/interceptor placement planning and an interceptor unmanned aerial vehicle (UAV) helicopter. Given the 2-D layout of an area, the planning system optimally places perimeter cameras based on maximum coverage and minimal cost. Part of this planning system includes the MATLAB implementation of Erdem and Sclaroff’s Radial Sweep algorithm for visibility polygon generation. Additionally, 2-D camera modeling is proposed for both fixed and PTZ cases. Finally, the interceptor is also placed to minimize shortest-path flight time to any point on the perimeter during a detection event. Secondly, a basic flight control system for the UAV helicopter is designed and implemented. The flight control system’s primary goal is to hover the helicopter in place when a human operator holds an automatic-flight switch. This system represents the first step in a complete waypoint-navigation flight control system. The flight control system is based on an inertial measurement unit (IMU) and a proportional-integral-derivative (PID) controller. This system is implemented using a general-purpose personal computer (GPPC) running Windows XP and other commercial off-the-shelf (COTS) hardware. This setup differs from other helicopter control systems which typically use custom embedded solutions or micro-controllers. Experiments demonstrate the sensor placement planning achieving \u3e90% coverage at optimized-cost for several typical areas given multiple camera types and parameters. Furthermore, the helicopter flight control system experiments achieve hovering success over short flight periods. However, the final conclusion is that the COTS IMU is insufficient for high-speed, high-frequency applications such as a helicopter control system

    NASA Thesaurus. Volume 1: Hierarchical listing

    Get PDF
    There are 16,713 postable terms and 3,716 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary

    Soft sensors in automotive applications

    Get PDF
    2017 - 2018In this work, design and validation techniques of two soft sensors for the estimation of the motorcycle vertical dynamic have been proposed. The aim of this work is to develop soft sensors able to predict the rear and front stroke of a motorcycle suspension. This kind of information are typically used in the control loop of semi‐active or active suspension systems. Replacing the hard sensor with a soft sensor, enable to reduce cost and improve reliability of the system. An analysis of the motorcycle physical model has been carried out to analyze the correlation existing among motorcycle vertical dynamic quantities in order to determine which of them are necessary for the development of a suspension stroke soft sensor. More in details, a first soft sensor for the rear stroke has been developed using a Nonlinear Auto‐Regressive with eXogenous inputs (NARX) neural network. A second soft sensor for the front suspension stroke velocity has been designed using two different techniques based respectively on Digital filtering and NARX neural network. As an example of application, an Instrument Fault Detection (IFD) scheme, based on the rear stroke soft sensor, has been shown. Experimental results have demonstrated the good reliability and promptness of the scheme in detecting different typologies of faults as losing calibration faults, hold‐faults, and open/short circuit faults thanks to the soft sensor developed. Finally, the scheme has been successfully implemented and tested on an ARM microcontroller, to confirm the feasibility of a real‐time implementation on actual processing units used in such context. [edited by Author]XXX cicl
    • 

    corecore