17 research outputs found

    A survey of face detection, extraction and recognition

    Get PDF
    The goal of this paper is to present a critical survey of existing literatures on human face recognition over the last 4-5 years. Interest and research activities in face recognition have increased significantly over the past few years, especially after the American airliner tragedy on September 11 in 2001. While this growth largely is driven by growing application demands, such as static matching of controlled photographs as in mug shots matching, credit card verification to surveillance video images, identification for law enforcement and authentication for banking and security system access, advances in signal analysis techniques, such as wavelets and neural networks, are also important catalysts. As the number of proposed techniques increases, survey and evaluation becomes important

    A Multi-Stage Classifier for Face Recognition Undertaken by Coarse-to-fine Strategy

    Get PDF
    Face recognition has been a very active research area for past two decades due to its widely applications such as identity authentication, airport security and access control, surveillance, and video retrieval systems, etc. Numerous approaches have been proposed for face recognition and considerable successes have been reported [1]. A successful face recognitio

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Gender Classification from Facial Images

    Get PDF
    Gender classification based on facial images has received increased attention in the computer vision community. In this work, a comprehensive evaluation of state-of-the-art gender classification methods is carried out on publicly available databases and extended to reallife face images, where face detection and face normalization are essential for the success of the system. Next, the possibility of predicting gender from face images acquired in the near-infrared spectrum (NIR) is explored. In this regard, the following two questions are addressed: (a) Can gender be predicted from NIR face images; and (b) Can a gender predictor learned using visible (VIS) images operate successfully on NIR images and vice-versa? The experimental results suggest that NIR face images do have some discriminatory information pertaining to gender, although the degree of discrimination is noticeably lower than that of VIS images. Further, the use of an illumination normalization routine may be essential for facilitating cross-spectral gender prediction. By formulating the problem of gender classification in the framework of both visible and near-infrared images, the guidelines for performing gender classification in a real-world scenario is provided, along with the strengths and weaknesses of each methodology. Finally, the general problem of attribute classification is addressed, where features such as expression, age and ethnicity are derived from a face image

    An automatic system for classification of breast cancer lesions in ultrasound images

    Get PDF
    Breast cancer is the most common of all cancers and second most deadly cancer in women in the developed countries. Mammography and ultrasound imaging are the standard techniques used in cancer screening. Mammography is widely used as the primary tool for cancer screening, however it is invasive technique due to radiation used. Ultrasound seems to be good at picking up many cancers missed by mammography. In addition, ultrasound is non-invasive as no radiation is used, portable and versatile. However, ultrasound images have usually poor quality because of multiplicative speckle noise that results in artifacts. Because of noise segmentation of suspected areas in ultrasound images is a challenging task that remains an open problem despite many years of research. In this research, a new method for automatic detection of suspected breast cancer lesions using ultrasound is proposed. In this fully automated method, new de-noising and segmentation techniques are introduced and high accuracy classifier using combination of morphological and textural features is used. We use a combination of fuzzy logic and compounding to denoise ultrasound images and reduce shadows. We introduced a new method to identify the seed points and then use region growing method to perform segmentation. For preliminary classification we use three classifiers (ANN, AdaBoost, FSVM) and then we use a majority voting to get the final result. We demonstrate that our automated system performs better than the other state-of-the-art systems. On our database containing ultrasound images for 80 patients we reached accuracy of 98.75% versus ABUS method with 88.75% accuracy and Hybrid Filtering method with 92.50% accuracy. Future work would involve a larger dataset of ultrasound images and we will extend our system to handle colour ultrasound images. We will also study the impact of larger number of texture and morphological features as well as weighting scheme on performance of our classifier. We will also develop an automated method to identify the "wall thickness" of a mass in breast ultrasound images. Presently the wall thickness is extracted manually with the help of a physician

    State of the Art in Face Recognition

    Get PDF
    Notwithstanding the tremendous effort to solve the face recognition problem, it is not possible yet to design a face recognition system with a potential close to human performance. New computer vision and pattern recognition approaches need to be investigated. Even new knowledge and perspectives from different fields like, psychology and neuroscience must be incorporated into the current field of face recognition to design a robust face recognition system. Indeed, many more efforts are required to end up with a human like face recognition system. This book tries to make an effort to reduce the gap between the previous face recognition research state and the future state

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    A novel face recognition system in unconstrained environments using a convolutional neural network

    Get PDF
    The performance of most face recognition systems (FRS) in unconstrained environments is widely noted to be sub-optimal. One reason for this poor performance may be due to the lack of highly effective image pre-processing approaches, which are typically required before the feature extraction and classification stages. Furthermore, it is noted that only minimal face recognition issues are typically considered in most FRS, thus limiting the wide applicability of most FRS in real-life scenarios. Thus, it is envisaged that developing more effective pre-processing techniques, in addition to selecting the correct features for classification, will significantly improve the performance of FRS. The thesis investigates different research works on FRS, its techniques and challenges in unconstrained environments. The thesis proposes a novel image enhancement technique as a pre-processing approach for FRS. The proposed enhancement technique improves on the overall FRS model resulting into an increased recognition performance. Also, a selection of novel hybrid features has been presented that is extracted from the enhanced facial images within the dataset to improve recognition performance. The thesis proposes a novel evaluation function as a component within the image enhancement technique to improve face recognition in unconstrained environments. Also, a defined scale mechanism was designed within the evaluation function to evaluate the enhanced images such that extreme values depict too dark or too bright images. The proposed algorithm enables the system to automatically select the most appropriate enhanced face image without human intervention. Evaluation of the proposed algorithm was done using standard parameters, where it is demonstrated to outperform existing image enhancement techniques both quantitatively and qualitatively. The thesis confirms the effectiveness of the proposed image enhancement technique towards face recognition in unconstrained environments using the convolutional neural network. Furthermore, the thesis presents a selection of hybrid features from the enhanced image that results in effective image classification. Different face datasets were selected where each face image was enhanced using the proposed and existing image enhancement technique prior to the selection of features and classification task. Experiments on the different face datasets showed increased and better performance using the proposed approach. The thesis shows that putting an effective image enhancement technique as a preprocessing approach can improve the performance of FRS as compared to using unenhanced face images. Also, the right features to be extracted from the enhanced face dataset as been shown to be an important factor for the improvement of FRS. The thesis made use of standard face datasets to confirm the effectiveness of the proposed method. On the LFW face dataset, an improved performance recognition rate was obtained when considering all the facial conditions within the face dataset.Thesis (PhD)--University of Pretoria, 2018.CSIR-DST Inter programme bursaryElectrical, Electronic and Computer EngineeringPhDUnrestricte
    corecore