5 research outputs found

    Hybrid active force control for fixed based rotorcraft

    Get PDF
    Disturbances are considered major challenges faced in the deployment of rotorcraft unmanned aerial vehicle (UAV) systems. Among different types of rotorcraft systems, the twin-rotor helicopter and quadrotor models are considered the most versatile flying machines nowadays due to their range of applications in the civilian and military sectors. However, these systems are multivariate and highly non-linear, making them difficult to be accurately controlled. Their performance could be further compromised when they are operated in the presence of disturbances or uncertainties. This dissertation presents an innovative hybrid control scheme for rotorcraft systems to improve disturbance rejection capability while maintaining system stability, based on a technique called active force control (AFC) via simulation and experimental works. A detailed dynamic model of each aerial system was derived based on the Euler–Lagrange and Newton-Euler methods, taking into account various assumptions and conditions. As a result of the derived models, a proportional-integral-derivative (PID) controller was designed to achieve the required altitude and attitude motions. Due to the PID's inability to reject applied disturbances, the AFC strategy was incorporated with the designed PID controller, to be known as the PID-AFC scheme. To estimate control parameters automatically, a number of artificial intelligence algorithms were employed in this study, namely the iterative learning algorithm and fuzzy logic. Intelligent rules of these AI algorithms were designed and embedded into the AFC loop, identified as intelligent active force control (IAFC)-based methods. This involved, PID-iterative learning active force control (PID-ILAFC) and PID-fuzzy logic active force control (PID-FLAFC) schemes. To test the performance and robustness of these proposed hybrid control systems, several disturbance models were introduced, namely the sinusoidal wave, pulsating, and Dryden wind gust model disturbances. Integral square error was selected as the index performance to compare between the proposed control schemes. In this study, the effectiveness of the PID-ILAFC strategy in connection with the body jerk performance was investigated in the presence of applied disturbance. In terms of experimental work, hardware-in-the-loop (HIL) experimental tests were conducted for a fixed-base rotorcraft UAV system to investigate how effective are the proposed hybrid PID-ILAFC schemes in disturbance rejection. Simulated results, in time domains, reveal the efficacy of the proposed hybrid IAFC-based control methods in the cancellation of different applied disturbances, while preserving the stability of the rotorcraft system, as compared to the conventional PID controller. In most of the cases, the simulated results show a reduction of more than 55% in settling time. In terms of body jerk performance, it was improved by around 65%, for twin-rotor helicopter system, and by a 45%, for quadrotor system. To achieve the best possible performance, results recommend using the full output signal produced by the AFC strategy according to the sensitivity analysis. The HIL experimental tests results demonstrate that the PID-ILAFC method can improve the disturbance rejection capability when compared to other control systems and show good agreement with the simulated counterpart. However, the selection of the appropriate learning parameters and initial conditions is viewed as a crucial step toward this improved performance

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Fault tolerant flight control system design for unmanned aerial vehicles

    Get PDF
    Safety and reliability of air vehicles is of the utmost importance. This is particularly true for large civil transport aircraft where a large number of human lives depend on safety critical design. With the increase in the use of unmanned aerial vehicles (UAVs) in our airspace it is essential that UAV safety is also given attention to prevent devastating failures which could ultimately lead to loss of human lives. While civil aircraft have human operators, the pilot, to counteract any unforeseen faults, autonomous UAVs are only as good as the on board flight computer. Large civil aircraft also have the luxury of weight hence redundant actuators (control surfaces) can be installed and in the event of a faulty set of actuators the redundant actuators can be brought into action to negate the effects of any faults. Again weight is a luxury that UAVs do not have. The main objective of this research is to study the design of a fault tolerant flight controller that can exploit the mathematical redundancies in the flight dynamic equations as opposed to adding hardware redundancies that would result in significant weight increase. This thesis presents new research into fault tolerant control for flight vehicles. Upon examining the flight dynamic equations it can be seen, for example, that an aileron, which is primarily used to perform a roll manoeuvre, can be used to execute a limited pitch moment. Hence a control method is required that moves away from the traditional fixed structure model where control surface roles are clearly defined. For this reason, in this thesis, I have chosen to study the application of model predictive control (MPC) to fault tolerant control systems. MPC is a model based method where a model of the plant forms an integral part of the controller. An optimisation is performed based on model estimations of the plant and the inputs are chosen via an optimisation process. One of the main contributions of this thesis is the development of a nonlinear model predictive controller for fault tolerant flight control. An aircraft is a highly nonlinear system hence if a nonlinear model can be integrated into the control process the cross-coupling effects of the control surface contributions can be easily exploited. An active fault tolerant control system comprises not only of the fault tolerant controller but also a fault detection and isolation subsystem. A common fault detection method is based on parameter estimation using filtering techniques. The solution proposed in this thesis uses an unscented Kalman filter (UKF) for parameter estimation and controller updates. In summary the main contribution of this thesis is the development of a new active fault tolerant flight control system. This new innovative controller exploits the idea of analytical redundancy as opposed to hardware redundancy. It comprises of a nonlinear model predictive based controller using pseudospectral discretisation to solve the nonlinear optimal control problem. Furthermore a UKF is incorporated into the design of the active fault tolerant flight control system

    12th International Conference on Vibrations in Rotating Machinery

    Get PDF
    Since 1976, the Vibrations in Rotating Machinery conferences have successfully brought industry and academia together to advance state-of-the-art research in dynamics of rotating machinery. 12th International Conference on Vibrations in Rotating Machinery contains contributions presented at the 12th edition of the conference, from industrial and academic experts from different countries. The book discusses the challenges in rotor-dynamics, rub, whirl, instability and more. The topics addressed include: - Active, smart vibration control - Rotor balancing, dynamics, and smart rotors - Bearings and seals - Noise vibration and harshness - Active and passive damping - Applications: wind turbines, steam turbines, gas turbines, compressors - Joints and couplings - Challenging performance boundaries of rotating machines - High power density machines - Electrical machines for aerospace - Management of extreme events - Active machines - Electric supercharging - Blades and bladed assemblies (forced response, flutter, mistuning) - Fault detection and condition monitoring - Rub, whirl and instability - Torsional vibration Providing the latest research and useful guidance, 12th International Conference on Vibrations in Rotating Machinery aims at those from industry or academia that are involved in transport, power, process, medical engineering, manufacturing or construction
    corecore