965 research outputs found

    Fear Classification using Affective Computing with Physiological Information and Smart-Wearables

    Get PDF
    Mención Internacional en el título de doctorAmong the 17 Sustainable Development Goals proposed within the 2030 Agenda and adopted by all of the United Nations member states, the fifth SDG is a call for action to effectively turn gender equality into a fundamental human right and an essential foundation for a better world. It includes the eradication of all types of violence against women. Focusing on the technological perspective, the range of available solutions intended to prevent this social problem is very limited. Moreover, most of the solutions are based on a panic button approach, leaving aside the usage and integration of current state-of-the-art technologies, such as the Internet of Things (IoT), affective computing, cyber-physical systems, and smart-sensors. Thus, the main purpose of this research is to provide new insight into the design and development of tools to prevent and combat Gender-based Violence risky situations and, even, aggressions, from a technological perspective, but without leaving aside the different sociological considerations directly related to the problem. To achieve such an objective, we rely on the application of affective computing from a realist point of view, i.e. targeting the generation of systems and tools capable of being implemented and used nowadays or within an achievable time-frame. This pragmatic vision is channelled through: 1) an exhaustive study of the existing technological tools and mechanisms oriented to the fight Gender-based Violence, 2) the proposal of a new smart-wearable system intended to deal with some of the current technological encountered limitations, 3) a novel fear-related emotion classification approach to disentangle the relation between emotions and physiology, and 4) the definition and release of a new multi-modal dataset for emotion recognition in women. Firstly, different fear classification systems using a reduced set of physiological signals are explored and designed. This is done by employing open datasets together with the combination of time, frequency and non-linear domain techniques. This design process is encompassed by trade-offs between both physiological considerations and embedded capabilities. The latter is of paramount importance due to the edge-computing focus of this research. Two results are highlighted in this first task, the designed fear classification system that employed the DEAP dataset data and achieved an AUC of 81.60% and a Gmean of 81.55% on average for a subjectindependent approach, and only two physiological signals; and the designed fear classification system that employed the MAHNOB dataset data achieving an AUC of 86.00% and a Gmean of 73.78% on average for a subject-independent approach, only three physiological signals, and a Leave-One-Subject-Out configuration. A detailed comparison with other emotion recognition systems proposed in the literature is presented, which proves that the obtained metrics are in line with the state-ofthe- art. Secondly, Bindi is presented. This is an end-to-end autonomous multimodal system leveraging affective IoT throughout auditory and physiological commercial off-theshelf smart-sensors, hierarchical multisensorial fusion, and secured server architecture to combat Gender-based Violence by automatically detecting risky situations based on a multimodal intelligence engine and then triggering a protection protocol. Specifically, this research is focused onto the hardware and software design of one of the two edge-computing devices within Bindi. This is a bracelet integrating three physiological sensors, actuators, power monitoring integrated chips, and a System- On-Chip with wireless capabilities. Within this context, different embedded design space explorations are presented: embedded filtering evaluation, online physiological signal quality assessment, feature extraction, and power consumption analysis. The reported results in all these processes are successfully validated and, for some of them, even compared against physiological standard measurement equipment. Amongst the different obtained results regarding the embedded design and implementation within the bracelet of Bindi, it should be highlighted that its low power consumption provides a battery life to be approximately 40 hours when using a 500 mAh battery. Finally, the particularities of our use case and the scarcity of open multimodal datasets dealing with emotional immersive technology, labelling methodology considering the gender perspective, balanced stimuli distribution regarding the target emotions, and recovery processes based on the physiological signals of the volunteers to quantify and isolate the emotional activation between stimuli, led us to the definition and elaboration of Women and Emotion Multi-modal Affective Computing (WEMAC) dataset. This is a multimodal dataset in which 104 women who never experienced Gender-based Violence that performed different emotion-related stimuli visualisations in a laboratory environment. The previous fear binary classification systems were improved and applied to this novel multimodal dataset. For instance, the proposed multimodal fear recognition system using this dataset reports up to 60.20% and 67.59% for ACC and F1-score, respectively. These values represent a competitive result in comparison with the state-of-the-art that deal with similar multi-modal use cases. In general, this PhD thesis has opened a new research line within the research group under which it has been developed. Moreover, this work has established a solid base from which to expand knowledge and continue research targeting the generation of both mechanisms to help vulnerable groups and socially oriented technology.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: David Atienza Alonso.- Secretaria: Susana Patón Álvarez.- Vocal: Eduardo de la Torre Arnan

    Time-frequency investigation of heart rate variability and cardiovascular system modeling of normal and chronic obstructive pulmonary disease (COPD) subjects

    Get PDF
    A study has been designed to add insight to some questions that have not been fully investigated in the heart rate variability field and the cardiovascular regulation system in normal and Chronic Obstructive Pulmonary Disease (COPD) subjects. It explores the correlations between heart rate variability and cardiovascular regulation, which interact through complex multiple feedback and control loops. This work examines the coupling between heart rate (HR), respiration (RESP), and blood pressure (BP) via closed-loop system identification techniques in order to noninvasively assess the underlying physiology. In the first part of the study, the applications of five different bilinear time-frequency representations are evaluated on modeled HRV test signals, actual electrocardiograms (ECG), BP and RESP signals. Each distribution: the short time Fourier transform (STFT), the smoothed pseudo Wigner-Ville (SPWVD), the ChoiWilliams (CWD), the Bom-Jordan-Cohen (BJC) and wavelet distribution (WL), has unique characteristics which is shown to affect the amount of smoothing and the generation of cross-terms. The CWD and the WL are chosen for further application because of overcoming the drawbacks of other distributions by providing higher resolution in time and frequency while suppressing interferences between the signal components. In the second part of the study, the Morlet, Meyer, Daubechies 4, Mexican Hat and Haar wavelets are used to investigate the heart rate and blood pressure variability from both COPD and normal subjects. The results of wavelet analysis give much more useful information than the Cohen\u27s class representations. Here we are able to quantitatively assess the parasympathetic (HF) and sympatho-vagal balance (LF:HF) changes as a function of time. As a result, COPD subjects breathe faster, have higher blood pressure variability and lower HRV. In the third part of the study, a special class of the exogenous autoregressive (ARX) model is developed as an analytical tool for uncovering the hidden autonomic control processes. Non-parametric relationships between the input and outputs of the ARX model resulting in transfer function estimations of the noise filters and the input filter were used as mechanistic cardiovascular models that have shown to have predictive capabilities for the underlying autonomic nervous system activity of COPD patients. Transfer functions of COPD cardiovascular models have similar DC gains but show a larger lag in phase as compared to the models of normal subjects. Finally, a method of severity classification is presented. This method combines the techniques of principal component analysis (PCA) and cluster analysis (CA) and has been shown to separate the COPD from the normal population with 100% accuracy. It can also classify the COPD population into at risk , mild , moderate and severe stages with 100%, 90%, 88% and 100% accuracy respectively. As a result, cluster and principal component analysis can be used to separate COPD and normal subjects and can be used successfully in COPD severity classification

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Pattern mining approaches used in sensor-based biometric recognition: a review

    Get PDF
    Sensing technologies place significant interest in the use of biometrics for the recognition and assessment of individuals. Pattern mining techniques have established a critical step in the progress of sensor-based biometric systems that are capable of perceiving, recognizing and computing sensor data, being a technology that searches for the high-level information about pattern recognition from low-level sensor readings in order to construct an artificial substitute for human recognition. The design of a successful sensor-based biometric recognition system needs to pay attention to the different issues involved in processing variable data being - acquisition of biometric data from a sensor, data pre-processing, feature extraction, recognition and/or classification, clustering and validation. A significant number of approaches from image processing, pattern identification and machine learning have been used to process sensor data. This paper aims to deliver a state-of-the-art summary and present strategies for utilizing the broadly utilized pattern mining methods in order to identify the challenges as well as future research directions of sensor-based biometric systems

    Extraction and Detection of Fetal Electrocardiograms from Abdominal Recordings

    Get PDF
    The non-invasive fetal ECG (NIFECG), derived from abdominal surface electrodes, offers novel diagnostic possibilities for prenatal medicine. Despite its straightforward applicability, NIFECG signals are usually corrupted by many interfering sources. Most significantly, by the maternal ECG (MECG), whose amplitude usually exceeds that of the fetal ECG (FECG) by multiple times. The presence of additional noise sources (e.g. muscular/uterine noise, electrode motion, etc.) further affects the signal-to-noise ratio (SNR) of the FECG. These interfering sources, which typically show a strong non-stationary behavior, render the FECG extraction and fetal QRS (FQRS) detection demanding signal processing tasks. In this thesis, several of the challenges regarding NIFECG signal analysis were addressed. In order to improve NIFECG extraction, the dynamic model of a Kalman filter approach was extended, thus, providing a more adequate representation of the mixture of FECG, MECG, and noise. In addition, aiming at the FECG signal quality assessment, novel metrics were proposed and evaluated. Further, these quality metrics were applied in improving FQRS detection and fetal heart rate estimation based on an innovative evolutionary algorithm and Kalman filtering signal fusion, respectively. The elaborated methods were characterized in depth using both simulated and clinical data, produced throughout this thesis. To stress-test extraction algorithms under ideal circumstances, a comprehensive benchmark protocol was created and contributed to an extensively improved NIFECG simulation toolbox. The developed toolbox and a large simulated dataset were released under an open-source license, allowing researchers to compare results in a reproducible manner. Furthermore, to validate the developed approaches under more realistic and challenging situations, a clinical trial was performed in collaboration with the University Hospital of Leipzig. Aside from serving as a test set for the developed algorithms, the clinical trial enabled an exploratory research. This enables a better understanding about the pathophysiological variables and measurement setup configurations that lead to changes in the abdominal signal's SNR. With such broad scope, this dissertation addresses many of the current aspects of NIFECG analysis and provides future suggestions to establish NIFECG in clinical settings.:Abstract Acknowledgment Contents List of Figures List of Tables List of Abbreviations List of Symbols (1)Introduction 1.1)Background and Motivation 1.2)Aim of this Work 1.3)Dissertation Outline 1.4)Collaborators and Conflicts of Interest (2)Clinical Background 2.1)Physiology 2.1.1)Changes in the maternal circulatory system 2.1.2)Intrauterine structures and feto-maternal connection 2.1.3)Fetal growth and presentation 2.1.4)Fetal circulatory system 2.1.5)Fetal autonomic nervous system 2.1.6)Fetal heart activity and underlying factors 2.2)Pathology 2.2.1)Premature rupture of membrane 2.2.2)Intrauterine growth restriction 2.2.3)Fetal anemia 2.3)Interpretation of Fetal Heart Activity 2.3.1)Summary of clinical studies on FHR/FHRV 2.3.2)Summary of studies on heart conduction 2.4)Chapter Summary (3)Technical State of the Art 3.1)Prenatal Diagnostic and Measuring Technique 3.1.1)Fetal heart monitoring 3.1.2)Related metrics 3.2)Non-Invasive Fetal ECG Acquisition 3.2.1)Overview 3.2.2)Commercial equipment 3.2.3)Electrode configurations 3.2.4)Available NIFECG databases 3.2.5)Validity and usability of the non-invasive fetal ECG 3.3)Non-Invasive Fetal ECG Extraction Methods 3.3.1)Overview on the non-invasive fetal ECG extraction methods 3.3.2)Kalman filtering basics 3.3.3)Nonlinear Kalman filtering 3.3.4)Extended Kalman filter for FECG estimation 3.4)Fetal QRS Detection 3.4.1)Merging multichannel fetal QRS detections 3.4.2)Detection performance 3.5)Fetal Heart Rate Estimation 3.5.1)Preprocessing the fetal heart rate 3.5.2)Fetal heart rate statistics 3.6)Fetal ECG Morphological Analysis 3.7)Problem Description 3.8)Chapter Summary (4)Novel Approaches for Fetal ECG Analysis 4.1)Preliminary Considerations 4.2)Fetal ECG Extraction by means of Kalman Filtering 4.2.1)Optimized Gaussian approximation 4.2.2)Time-varying covariance matrices 4.2.3)Extended Kalman filter with unknown inputs 4.2.4)Filter calibration 4.3)Accurate Fetal QRS and Heart Rate Detection 4.3.1)Multichannel evolutionary QRS correction 4.3.2)Multichannel fetal heart rate estimation using Kalman filters 4.4)Chapter Summary (5)Data Material 5.1)Simulated Data 5.1.1)The FECG Synthetic Generator (FECGSYN) 5.1.2)The FECG Synthetic Database (FECGSYNDB) 5.2)Clinical Data 5.2.1)Clinical NIFECG recording 5.2.2)Scope and limitations of this study 5.2.3)Data annotation: signal quality and fetal amplitude 5.2.4)Data annotation: fetal QRS annotation 5.3)Chapter Summary (6)Results for Data Analysis 6.1)Simulated Data 6.1.1)Fetal QRS detection 6.1.2)Morphological analysis 6.2)Own Clinical Data 6.2.1)FQRS correction using the evolutionary algorithm 6.2.2)FHR correction by means of Kalman filtering (7)Discussion and Prospective 7.1)Data Availability 7.1.1)New measurement protocol 7.2)Signal Quality 7.3)Extraction Methods 7.4)FQRS and FHR Correction Algorithms (8)Conclusion References (A)Appendix A - Signal Quality Annotation (B)Appendix B - Fetal QRS Annotation (C)Appendix C - Data Recording GU

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Algorithms for information extraction and signal annotation on long-term biosignals using clustering techniques

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia BiomédicaOne of the biggest challenges when analysing data is to extract information from it, especially if we dealing with very large sized data, which brings a new set of barriers to be overcome. The extracted information can be used to aid physicians in their diagnosis since biosignals often carry vital information on the subjects. In this research work, we present a signal-independent algorithm with two main goals: perform events detection in biosignals and, with those events, extract information using a set of distance measures which will be used as input to a parallel version of the k-means clustering algorithm. The first goal is achieved by using two different approaches. Events can be found based on peaks detection through an adaptive threshold defined as the signal’s root mean square (RMS) or by morphological analysis through the computation of the signal’s meanwave. The final goal is achieved by dividing the distance measures into n parts and by performing k-means individually. In order to improve speed performance, parallel computing techniques were applied. For this study, a set of different types of signals was acquired and annotated by our algorithm. By visual inspection, the L1 and L2 Minkowski distances returned an output that allowed clustering signals’ cycles with an efficiency of 97:5% and 97:3%, respectively. Using the meanwave distance, our algorithm achieved an accuracy of 97:4%. For the downloaded ECGs from the Physionet databases, the developed algorithm detected 638 out of 644 manually annotated events provided by physicians. The fact that this algorithm can be applied to long-term raw biosignals and without requiring any prior information about them makes it an important contribution in biosignals’ information extraction and annotation

    Computational Intelligence in Healthcare

    Get PDF
    This book is a printed edition of the Special Issue Computational Intelligence in Healthcare that was published in Electronic

    Computational Intelligence in Healthcare

    Get PDF
    The number of patient health data has been estimated to have reached 2314 exabytes by 2020. Traditional data analysis techniques are unsuitable to extract useful information from such a vast quantity of data. Thus, intelligent data analysis methods combining human expertise and computational models for accurate and in-depth data analysis are necessary. The technological revolution and medical advances made by combining vast quantities of available data, cloud computing services, and AI-based solutions can provide expert insight and analysis on a mass scale and at a relatively low cost. Computational intelligence (CI) methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods, have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. CI-based systems can learn from data and evolve according to changes in the environments by taking into account the uncertainty characterizing health data, including omics data, clinical data, sensor, and imaging data. The use of CI in healthcare can improve the processing of such data to develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well as for the analysis of administrative processes. The present Special Issue on computational intelligence for healthcare is intended to show the potential and the practical impacts of CI techniques in challenging healthcare applications
    corecore