3,833 research outputs found

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference

    On relational learning and discovery in social networks: a survey

    Get PDF
    The social networking scene has evolved tremendously over the years. It has grown in relational complexities that extend a vast presence onto popular social media platforms on the internet. With the advance of sentimental computing and social complexity, relationships which were once thought to be simple have now become multi-dimensional and widespread in the online scene. This explosion in the online social scene has attracted much research attention. The main aims of this work revolve around the knowledge discovery and datamining processes of these feature-rich relations. In this paper, we provide a survey of relational learning and discovery through popular social analysis of different structure types which are integral to applications within the emerging field of sentimental and affective computing. It is hoped that this contribution will add to the clarity of how social networks are analyzed with the latest groundbreaking methods and provide certain directions for future improvements

    The Extraction of Community Structures from Publication Networks to Support Ethnographic Observations of Field Differences in Scientific Communication

    Full text link
    The scientific community of researchers in a research specialty is an important unit of analysis for understanding the field specific shaping of scientific communication practices. These scientific communities are, however, a challenging unit of analysis to capture and compare because they overlap, have fuzzy boundaries, and evolve over time. We describe a network analytic approach that reveals the complexities of these communities through examination of their publication networks in combination with insights from ethnographic field studies. We suggest that the structures revealed indicate overlapping sub- communities within a research specialty and we provide evidence that they differ in disciplinary orientation and research practices. By mapping the community structures of scientific fields we aim to increase confidence about the domain of validity of ethnographic observations as well as of collaborative patterns extracted from publication networks thereby enabling the systematic study of field differences. The network analytic methods presented include methods to optimize the delineation of a bibliographic data set in order to adequately represent a research specialty, and methods to extract community structures from this data. We demonstrate the application of these methods in a case study of two research specialties in the physical and chemical sciences.Comment: Accepted for publication in JASIS
    • …
    corecore