3,170 research outputs found

    SUNSEED — An evolutionary path to smart grid comms over converged telco and energy provider networks

    Get PDF
    SUNSEED, 'Sustainable and robust networking for smart electricity distribution', is a 3-year project started in 2014 and partially funded under call FP7-ICT-2013-11. The project objective is to research, design and implement methods for exploitation of existing communication infrastructure of energy distribution service operators (DSO) and telecom operators (telco) for the future smart grid operations and services. To achieve this objective, SUNSEED proposes an evolutionary approach to converge existing DSO and telco networks, consisting of six steps: overlap, interconnect, interoperate, manage, plan and open. Each step involves identification of the related smart grid service requirements and implementation of the appropriate solutions. The promise of SUNSEED approach lies in potentially much lower investments and total cost of ownership of future smart energy grids within dense distributed energy generation and prosumer environments

    Local flexibility market design for aggregators providing multiple flexibility services at distribution network level

    Get PDF
    This paper presents a general description of local flexibility markets as a market-based management mechanism for aggregators. The high penetration of distributed energy resources introduces new flexibility services like prosumer or community self-balancing, congestion management and time-of-use optimization. This work is focused on the flexibility framework to enable multiple participants to compete for selling or buying flexibility. In this framework, the aggregator acts as a local market operator and supervises flexibility transactions of the local energy community. Local market participation is voluntary. Potential flexibility stakeholders are the distribution system operator, the balance responsible party and end-users themselves. Flexibility is sold by means of loads, generators, storage units and electric vehicles. Finally, this paper presents needed interactions between all local market stakeholders, the corresponding inputs and outputs of local market operation algorithms from participants and a case study to highlight the application of the local flexibility market in three scenarios. The local market framework could postpone grid upgrades, reduce energy costs and increase distribution grids’ hosting capacity.Postprint (published version

    Peer-to-peer and community-based markets: A comprehensive review

    Full text link
    The advent of more proactive consumers, the so-called "prosumers", with production and storage capabilities, is empowering the consumers and bringing new opportunities and challenges to the operation of power systems in a market environment. Recently, a novel proposal for the design and operation of electricity markets has emerged: these so-called peer-to-peer (P2P) electricity markets conceptually allow the prosumers to directly share their electrical energy and investment. Such P2P markets rely on a consumer-centric and bottom-up perspective by giving the opportunity to consumers to freely choose the way they are to source their electric energy. A community can also be formed by prosumers who want to collaborate, or in terms of operational energy management. This paper contributes with an overview of these new P2P markets that starts with the motivation, challenges, market designs moving to the potential future developments in this field, providing recommendations while considering a test-case

    An Exchange Mechanism to Coordinate Flexibility in Residential Energy Cooperatives

    Full text link
    Energy cooperatives (ECs) such as residential and industrial microgrids have the potential to mitigate increasing fluctuations in renewable electricity generation, but only if their joint response is coordinated. However, the coordination and control of independently operated flexible resources (e.g., storage, demand response) imposes critical challenges arising from the heterogeneity of the resources, conflict of interests, and impact on the grid. Correspondingly, overcoming these challenges with a general and fair yet efficient exchange mechanism that coordinates these distributed resources will accommodate renewable fluctuations on a local level, thereby supporting the energy transition. In this paper, we introduce such an exchange mechanism. It incorporates a payment structure that encourages prosumers to participate in the exchange by increasing their utility above baseline alternatives. The allocation from the proposed mechanism increases the system efficiency (utilitarian social welfare) and distributes profits more fairly (measured by Nash social welfare) than individual flexibility activation. A case study analyzing the mechanism performance and resulting payments in numerical experiments over real demand and generation profiles of the Pecan Street dataset elucidates the efficacy to promote cooperation between co-located flexibilities in residential cooperatives through local exchange.Comment: Accepted in IEEE ICIT 201
    • 

    corecore