4,206 research outputs found

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity network—the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    Service Orientation and the Smart Grid state and trends

    Get PDF
    The energy market is undergoing major changes, the most notable of which is the transition from a hierarchical closed system toward a more open one highly based on a “smart” information-rich infrastructure. This transition calls for new information and communication technologies infrastructures and standards to support it. In this paper, we review the current state of affairs and the actual technologies with respect to such transition. Additionally, we highlight the contact points between the needs of the future grid and the advantages brought by service-oriented architectures.

    Practical applications of multi-agent systems in electric power systems

    Get PDF
    The transformation of energy networks from passive to active systems requires the embedding of intelligence within the network. One suitable approach to integrating distributed intelligent systems is multi-agent systems technology, where components of functionality run as autonomous agents capable of interaction through messaging. This provides loose coupling between components that can benefit the complex systems envisioned for the smart grid. This paper reviews the key milestones of demonstrated agent systems in the power industry and considers which aspects of agent design must still be addressed for widespread application of agent technology to occur

    Towards the next generation of smart grids: semantic and holonic multi-agent management of distributed energy resources

    Get PDF
    The energy landscape is experiencing accelerating change; centralized energy systems are being decarbonized, and transitioning towards distributed energy systems, facilitated by advances in power system management and information and communication technologies. This paper elaborates on these generations of energy systems by critically reviewing relevant authoritative literature. This includes a discussion of modern concepts such as ‘smart grid’, ‘microgrid’, ‘virtual power plant’ and ‘multi-energy system’, and the relationships between them, as well as the trends towards distributed intelligence and interoperability. Each of these emerging urban energy concepts holds merit when applied within a centralized grid paradigm, but very little research applies these approaches within the emerging energy landscape typified by a high penetration of distributed energy resources, prosumers (consumers and producers), interoperability, and big data. Given the ongoing boom in these fields, this will lead to new challenges and opportunities as the status-quo of energy systems changes dramatically. We argue that a new generation of holonic energy systems is required to orchestrate the interplay between these dense, diverse and distributed energy components. The paper therefore contributes a description of holonic energy systems and the implicit research required towards sustainability and resilience in the imminent energy landscape. This promotes the systemic features of autonomy, belonging, connectivity, diversity and emergence, and balances global and local system objectives, through adaptive control topologies and demand responsive energy management. Future research avenues are identified to support this transition regarding interoperability, secure distributed control and a system of systems approach

    Ontologies for the Interoperability of Heterogeneous Multi-Agent Systems in the scope of Energy and Power Systems

    Get PDF
    Tesis por compendio de publicaciones[ES]El sector eléctrico, tradicionalmente dirigido por monopolios y poderosas empresas de servicios públicos, ha experimentado cambios significativos en las últimas décadas. Los avances más notables son una mayor penetración de las fuentes de energía renovable (RES por sus siglas en inglés) y la generación distribuida, que han llevado a la adopción del paradigma de las redes inteligentes (SG por sus siglas en inglés) y a la introducción de enfoques competitivos en los mercados de electricidad (EMs por sus siglas en inglés) mayoristas y algunos minoristas. Las SG emergieron rápidamente de un concepto ampliamente aceptado en la realidad. La intermitencia de las fuentes de energía renovable y su integración a gran escala plantea nuevas limitaciones y desafíos que afectan en gran medida las operaciones de los EMs. El desafiante entorno de los sistemas de potencia y energía (PES por sus siglas en inglés) refuerza la necesidad de estudiar, experimentar y validar operaciones e interacciones competitivas, dinámicas y complejas. En este contexto, la simulación, el apoyo a la toma de decisiones, y las herramientas de gestión inteligente, se vuelven imprescindibles para estudiar los diferentes mecanismos del mercado y las relaciones entre los actores involucrados. Para ello, la nueva generación de herramientas debe ser capaz de hacer frente a la rápida evolución de los PES, proporcionando a los participantes los medios adecuados para adaptarse, abordando nuevos modelos y limitaciones, y su compleja relación con los desarrollos tecnológicos y de negocios. Las plataformas basadas en múltiples agentes son particularmente adecuadas para analizar interacciones complejas en sistemas dinámicos, como PES, debido a su naturaleza distribuida e independiente. La descomposición de tareas complejas en asignaciones simples y la fácil inclusión de nuevos datos y modelos de negocio, restricciones, tipos de actores y operadores, y sus interacciones, son algunas de las principales ventajas de los enfoques basados en agentes. En este dominio, han surgido varias herramientas de modelado para simular, estudiar y resolver problemas de subdominios específicos de PES. Sin embargo, existe una limitación generalizada referida a la importante falta de interoperabilidad entre sistemas heterogéneos, que impide abordar el problema de manera global, considerando todas las interrelaciones relevantes existentes. Esto es esencial para que los jugadores puedan aprovechar al máximo las oportunidades en evolución. Por lo tanto, para lograr un marco tan completo aprovechando las herramientas existentes que permiten el estudio de partes específicas del problema global, se requiere la interoperabilidad entre estos sistemas. Las ontologías facilitan la interoperabilidad entre sistemas heterogéneos al dar un significado semántico a la información intercambiada entre las distintas partes. La ventaja radica en el hecho de que todos los involucrados en un dominio particular los conocen, comprenden y están de acuerdo con la conceptualización allí definida. Existen, en la literatura, varias propuestas para el uso de ontologías dentro de PES, fomentando su reutilización y extensión. Sin embargo, la mayoría de las ontologías se centran en un escenario de aplicación específico o en una abstracción de alto nivel de un subdominio de los PES. Además, existe una considerable heterogeneidad entre estos modelos, lo que complica su integración y adopción. Es fundamental desarrollar ontologías que representen distintas fuentes de conocimiento para facilitar las interacciones entre entidades de diferente naturaleza, promoviendo la interoperabilidad entre sistemas heterogéneos basados en agentes que permitan resolver problemas específicos de PES. Estas brechas motivan el desarrollo del trabajo de investigación de este doctorado, que surge para brindar una solución a la interoperabilidad de sistemas heterogéneos dentro de los PES. Las diversas aportaciones de este trabajo dan como resultado una sociedad de sistemas multi-agente (MAS por sus siglas en inglés) para la simulación, estudio, soporte de decisiones, operación y gestión inteligente de PES. Esta sociedad de MAS aborda los PES desde el EM mayorista hasta el SG y la eficiencia energética del consumidor, aprovechando las herramientas de simulación y apoyo a la toma de decisiones existentes, complementadas con las desarrolladas recientemente, asegurando la interoperabilidad entre ellas. Utiliza ontologías para la representación del conocimiento en un vocabulario común, lo que facilita la interoperabilidad entre los distintos sistemas. Además, el uso de ontologías y tecnologías de web semántica permite el desarrollo de herramientas agnósticas de modelos para una adaptación flexible a nuevas reglas y restricciones, promoviendo el razonamiento semántico para sistemas sensibles al contexto

    Multi-Agent Decision Support Tool to Enable Interoperability among Heterogeneous Energy Systems

    Get PDF
    Worldwide electricity markets are undergoing a major restructuring process. One of the main reasons for the ongoing changes is to enable the adaptation of current market models to the new paradigm that arises from the large-scale integration of distributed generation sources. In order to deal with the unpredictability caused by the intermittent nature of the distributed generation and the large number of variables that contribute to the energy sector balance, it is extremely important to use simulation systems that are capable of dealing with the required complexity. This paper presents the Tools Control Center (TOOCC), a framework that allows the interoperability between heterogeneous energy and power simulation systems through the use of ontologies, allowing the simulation of scenarios with a high degree of complexity, through the cooperation of the individual capacities of each system. A case study based on real data is presented in order to demonstrate the interoperability capabilities of TOOCC. The simulation considers the energy management of a microgrid of a real university campus, from the perspective of the network manager and also of its consumers/producers, in a projection for a typical day of the winter of 2050.This work has been developed in the scope of the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 641794 (project DREAM-GO); CONTEST project - SAICT-POL/23575/2016; and has also been supported by FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013.info:eu-repo/semantics/publishedVersio

    Transactive energy system

    Get PDF
    The rising of distributed energy resource (DER) e.g. rooftop PV solar system, wind system and energy storage system, and load demand response bring both opportunities and challenges to the power grid. Coordinating decentralised DERs is important. The purpose of transactive energy (TE) system is to coordinate DERs at the distribution level and encourage consumers and prosumers to participate in electricity market by providing economic incentives. TE system enables customers and prosumers to sell the surplus energy to their neighbours. This thesis represents research on TE system in aspects of structure, technology, economics and participants. The impact of TE system in Australia’s electrical standard and electricity business mode is also explored. Moreover, based on research findings, a TE system model for Australia is proposed. The key findings of this project are: • TE System is a method to relieve electricity congestion. • The power flow (distribution level) and transaction in TE system are bidirectional. • TE system is customer-oriented and offers more choices to customers/prosumers. • The new distribution system operator (DSO) plays a key role in coordinating DERs and end-users. • Undertaking a TE system demonstration project in Australia is suggested

    Smart Microgrids: Overview and Outlook

    Full text link
    The idea of changing our energy system from a hierarchical design into a set of nearly independent microgrids becomes feasible with the availability of small renewable energy generators. The smart microgrid concept comes with several challenges in research and engineering targeting load balancing, pricing, consumer integration and home automation. In this paper we first provide an overview on these challenges and present approaches that target the problems identified. While there exist promising algorithms for the particular field, we see a missing integration which specifically targets smart microgrids. Therefore, we propose an architecture that integrates the presented approaches and defines interfaces between the identified components such as generators, storage, smart and \dq{dumb} devices.Comment: presented at the GI Informatik 2012, Braunschweig Germany, Smart Grid Worksho

    Power Systems Simulation Using Ontologies to Enable the Interoperability of Multi-Agent Systems

    Get PDF
    A key challenge in the power and energy field is the development of decision-support systems that enable studying big problems as a whole. The interoperability between systems that address specific parts of the global problem is essential. Ontologies ease the interoperability between heterogeneous systems providing semantic meaning to the information exchanged between the various parties. The use of ontologies within Smart Grids has been proposed based on the Common Information Model, which defines a common vocabulary describing the basic components used in electricity transportation and distribution. However, these ontologies are focused on utilities needs. The development of ontologies that allow the representation of diverse knowledge sources is essential, aiming at supporting the interaction between entities of different natures, facilitating the interoperability between these systems. This paper proposes a set of ontologies to enable the interoperability between different types of simulators, namely regarding electricity markets, the smart grid, and residential energy management. A case study based on real data shows the advantages of the proposed approach in enabling comprehensive power system simulation studies.This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 703689 (project ADAPT), from the EUREKA - ITEA2 Project M2MGrids (ITEA-13011), Project SIMOCE (ANI—P2020 17690), and has received funding from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013.info:eu-repo/semantics/publishedVersio
    corecore