33,006 research outputs found

    Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks

    Full text link
    We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods that have tackled this problem in a deterministic or non-parametric way, we propose to model future frames in a probabilistic manner. Our probabilistic model makes it possible for us to sample and synthesize many possible future frames from a single input image. To synthesize realistic movement of objects, we propose a novel network structure, namely a Cross Convolutional Network; this network encodes image and motion information as feature maps and convolutional kernels, respectively. In experiments, our model performs well on synthetic data, such as 2D shapes and animated game sprites, and on real-world video frames. We present analyses of the learned network representations, showing it is implicitly learning a compact encoding of object appearance and motion. We also demonstrate a few of its applications, including visual analogy-making and video extrapolation.Comment: Journal preprint of arXiv:1607.02586 (IEEE TPAMI, 2019). The first two authors contributed equally to this work. Project page: http://visualdynamics.csail.mit.ed

    Visual Dynamics: Probabilistic Future Frame Synthesis via Cross Convolutional Networks

    Get PDF
    We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods, which have tackled this problem in a deterministic or non-parametric way, we propose a novel approach that models future frames in a probabilistic manner. Our probabilistic model makes it possible for us to sample and synthesize many possible future frames from a single input image. Future frame synthesis is challenging, as it involves low- and high-level image and motion understanding. We propose a novel network structure, namely a Cross Convolutional Network to aid in synthesizing future frames; this network structure encodes image and motion information as feature maps and convolutional kernels, respectively. In experiments, our model performs well on synthetic data, such as 2D shapes and animated game sprites, as well as on real-wold videos. We also show that our model can be applied to tasks such as visual analogy-making, and present an analysis of the learned network representations.Comment: The first two authors contributed equally to this wor

    Temporal View Synthesis of Dynamic Scenes through 3D Object Motion Estimation with Multi-Plane Images

    Full text link
    The challenge of graphically rendering high frame-rate videos on low compute devices can be addressed through periodic prediction of future frames to enhance the user experience in virtual reality applications. This is studied through the problem of temporal view synthesis (TVS), where the goal is to predict the next frames of a video given the previous frames and the head poses of the previous and the next frames. In this work, we consider the TVS of dynamic scenes in which both the user and objects are moving. We design a framework that decouples the motion into user and object motion to effectively use the available user motion while predicting the next frames. We predict the motion of objects by isolating and estimating the 3D object motion in the past frames and then extrapolating it. We employ multi-plane images (MPI) as a 3D representation of the scenes and model the object motion as the 3D displacement between the corresponding points in the MPI representation. In order to handle the sparsity in MPIs while estimating the motion, we incorporate partial convolutions and masked correlation layers to estimate corresponding points. The predicted object motion is then integrated with the given user or camera motion to generate the next frame. Using a disocclusion infilling module, we synthesize the regions uncovered due to the camera and object motion. We develop a new synthetic dataset for TVS of dynamic scenes consisting of 800 videos at full HD resolution. We show through experiments on our dataset and the MPI Sintel dataset that our model outperforms all the competing methods in the literature.Comment: To appear in ISMAR 2022; Project website: https://nagabhushansn95.github.io/publications/2022/DeCOMPnet.htm

    Unsupervised Learning of Depth and Ego-Motion from Video

    Full text link
    We present an unsupervised learning framework for the task of monocular depth and camera motion estimation from unstructured video sequences. We achieve this by simultaneously training depth and camera pose estimation networks using the task of view synthesis as the supervisory signal. The networks are thus coupled via the view synthesis objective during training, but can be applied independently at test time. Empirical evaluation on the KITTI dataset demonstrates the effectiveness of our approach: 1) monocular depth performing comparably with supervised methods that use either ground-truth pose or depth for training, and 2) pose estimation performing favorably with established SLAM systems under comparable input settings.Comment: Accepted to CVPR 2017. Project webpage: https://people.eecs.berkeley.edu/~tinghuiz/projects/SfMLearner

    Deep Video Generation, Prediction and Completion of Human Action Sequences

    Full text link
    Current deep learning results on video generation are limited while there are only a few first results on video prediction and no relevant significant results on video completion. This is due to the severe ill-posedness inherent in these three problems. In this paper, we focus on human action videos, and propose a general, two-stage deep framework to generate human action videos with no constraints or arbitrary number of constraints, which uniformly address the three problems: video generation given no input frames, video prediction given the first few frames, and video completion given the first and last frames. To make the problem tractable, in the first stage we train a deep generative model that generates a human pose sequence from random noise. In the second stage, a skeleton-to-image network is trained, which is used to generate a human action video given the complete human pose sequence generated in the first stage. By introducing the two-stage strategy, we sidestep the original ill-posed problems while producing for the first time high-quality video generation/prediction/completion results of much longer duration. We present quantitative and qualitative evaluation to show that our two-stage approach outperforms state-of-the-art methods in video generation, prediction and video completion. Our video result demonstration can be viewed at https://iamacewhite.github.io/supp/index.htmlComment: Under review for CVPR 2018. Haoye and Chunyan have equal contributio
    • …
    corecore