259,344 research outputs found

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Spectrum occupancy measurements and lessons learned in the context of cognitive radio

    Get PDF
    Various measurement campaigns have shown that numerous spectrum bands are vacant even though licenses have been issued by the regulatory agencies. Dynamic spectrum access (DSA) based on Cognitive Radio (CR) has been regarded as a prospective solution to improve spectrum utilization for wireless communications. Empirical measurement of the radio environment to promote understanding of the current spectrum usage of the different wireless services is the first step towards deployment of future CR networks. In this paper we present our spectrum measurement setup and discuss lessons learned during our measurement activities. The main contribution of the paper is to introduce global spectrum occupancy measurements and address the major drawbacks of previous spectrum occupancy studies by providing a unifying methodological framework for future spectrum measurement campaigns

    Meeting Real-Time Constraint of Spectrum Management in TV Black-Space Access

    Get PDF
    The TV set feedback feature standardized in the next generation TV system, ATSC 3.0, would enable opportunistic access of active TV channels in future Cognitive Radio Networks. This new dynamic spectrum access approach is named as black-space access, as it is complementary of current TV white space, which stands for inactive TV channels. TV black-space access can significantly increase the available spectrum of Cognitive Radio Networks in populated urban markets, where spectrum shortage is most severe while TV whitespace is very limited. However, to enable TV black-space access, secondary user has to evacuate a TV channel in a timely manner when TV user comes in. Such strict real-time constraint is an unique challenge of spectrum management infrastructure of Cognitive Radio Networks. In this paper, the real-time performance of spectrum management with regard to the degree of centralization of infrastructure is modeled and tested. Based on collected empirical network latency and database response time, we analyze the average evacuation time under four structures of spectrum management infrastructure: fully distribution, city-wide centralization, national-wide centralization, and semi-national centralization. The results show that national wide centralization may not meet the real-time requirement, while semi-national centralization that use multiple co-located independent spectrum manager can achieve real-time performance while keep most of the operational advantage of fully centralized structure.Comment: 9 pages, 7 figures, Technical Repor

    A REVIEW ON SPECTRUM SENSING METHODS FOR COGNITIVE RADIO NETWORKS

    Get PDF
    In Wireless Communication, Radio Spectrum is doing a vital role; for the future need it should use efficient. The existing system, it is not possible to use it efficiently where the allocation of spectrum is done based on fixed spectrum access (FSA) policy. Several surveys prove that it show the way to inefficient use of spectrum. An innovative technique is needed for spectrum utilization effectively. Using Dynamic spectrum access (DSA) policy, available spectrum can be exploited. Cognitive radio arises to be an attractive solution which introduces opportunistic usage of the frequency bands that are not commonly occupied by licensed users. Cognitive radios promote open spectrum allocation which is a clear departure from habitual command and control allocation process for radio spectrum usage. In short, it permits the formation of “infrastructure-less†joint network clusters which is called Cognitive Radio Networks (CRN). Conversely the spectrum sensing techniques are needed to detect free spectrum. In this paper, different spectrum sensing techniques are analyzed

    Participatory sensing as an enabler for self-organisation in future cellular networks

    Get PDF
    In this short review paper we summarise the emerging challenges in the field of participatory sensing for the self-organisation of the next generation of wireless cellular networks. We identify the potential of participatory sensing in enabling the self-organisation, deployment optimisation and radio resource management of wireless cellular networks. We also highlight how this approach can meet the future goals for the next generation of cellular system in terms of infrastructure sharing, management of multiple radio access techniques, flexible usage of spectrum and efficient management of very small data cells

    Trust-based Throughput in Cognitive Radio Networks

    Get PDF
    Cognitive Radio Networks (CRNs) deal with opportunistic spectrum access in order to fully utilize the scarce of spectrum resources, with the development of cognitive radio technologies to greater utilization of the spectrum. Nowa- days Cognitive Radio (CR) is a promising concept for improving the utilization of limited radio spectrum resources for future wireless communications and mobile computing. In this paper, we propose two approaches. At first we propose a trust aware model to authenticate the secondary users (SUs) in CRNs which provides a reliable technique to establish trust for CRNs. Secondly, we propose trust throughput mechanism to measure throughput in CRNs

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems
    • …
    corecore