108 research outputs found

    Fusion-based multimodal detection of hoaxes in social networks

    Get PDF
    International audienceSocial networks make it possible to share information rapidly and massively. Yet, one of their major drawback comes from the absence of verification of the piece of information, especially with viral messages. This is the issue addressed by the participants to the Verification Multimedia Use task of Mediaeval 2016. They used several approaches and clues from different modalities (text, image, social information). In this paper, we explore the interest of combining and merging these approaches in order to evaluate the predictive power of each modality and to make the most of their potential complementarity

    Deep Multimodal Image-Repurposing Detection

    Full text link
    Nefarious actors on social media and other platforms often spread rumors and falsehoods through images whose metadata (e.g., captions) have been modified to provide visual substantiation of the rumor/falsehood. This type of modification is referred to as image repurposing, in which often an unmanipulated image is published along with incorrect or manipulated metadata to serve the actor's ulterior motives. We present the Multimodal Entity Image Repurposing (MEIR) dataset, a substantially challenging dataset over that which has been previously available to support research into image repurposing detection. The new dataset includes location, person, and organization manipulations on real-world data sourced from Flickr. We also present a novel, end-to-end, deep multimodal learning model for assessing the integrity of an image by combining information extracted from the image with related information from a knowledge base. The proposed method is compared against state-of-the-art techniques on existing datasets as well as MEIR, where it outperforms existing methods across the board, with AUC improvement up to 0.23.Comment: To be published at ACM Multimeda 2018 (orals

    Can Machines Learn to Detect Fake News? A Survey Focused on Social Media

    Get PDF
    Through a systematic literature review method, in this work we searched classical electronic libraries in order to find the most recent papers related to fake news detection on social medias. Our target is mapping the state of art of fake news detection, defining fake news and finding the most useful machine learning technique for doing so. We concluded that the most used method for automatic fake news detection is not just one classical machine learning technique, but instead a amalgamation of classic techniques coordinated by a neural network. We also identified a need for a domain ontology that would unify the different terminology and definitions of the fake news domain. This lack of consensual information may mislead opinions and conclusions

    Ginger Cannot Cure Cancer: Battling Fake Health News with a Comprehensive Data Repository

    Full text link
    Nowadays, Internet is a primary source of attaining health information. Massive fake health news which is spreading over the Internet, has become a severe threat to public health. Numerous studies and research works have been done in fake news detection domain, however, few of them are designed to cope with the challenges in health news. For instance, the development of explainable is required for fake health news detection. To mitigate these problems, we construct a comprehensive repository, FakeHealth, which includes news contents with rich features, news reviews with detailed explanations, social engagements and a user-user social network. Moreover, exploratory analyses are conducted to understand the characteristics of the datasets, analyze useful patterns and validate the quality of the datasets for health fake news detection. We also discuss the novel and potential future research directions for the health fake news detection
    • 

    corecore