1,136 research outputs found

    Emitter Location Finding using Particle Swarm Optimization

    Get PDF
    Using several spatially separated receivers, nowadays positioning techniques, which are implemented to determine the location of the transmitter, are often required for several important disciplines such as military, security, medical, and commercial applications. In this study, localization is carried out by particle swarm optimization using time difference of arrival. In order to increase the positioning accuracy, time difference of arrival averaging based two new methods are proposed. Results are compared with classical algorithms and Cramer-Rao lower bound which is the theoretical limit of the estimation error

    XRLoc: Accurate UWB Localization for XR Systems

    Full text link
    Understanding the location of ultra-wideband (UWB) tag-attached objects and people in the real world is vital to enabling a smooth cyber-physical transition. However, most UWB localization systems today require multiple anchors in the environment, which can be very cumbersome to set up. In this work, we develop XRLoc, providing an accuracy of a few centimeters in many real-world scenarios. This paper will delineate the key ideas which allow us to overcome the fundamental restrictions that plague a single anchor point from localization of a device to within an error of a few centimeters. We deploy a VR chess game using everyday objects as a demo and find that our system achieves 2.42.4 cm median accuracy and 5.35.3 cm 90th90^\mathrm{th} percentile accuracy in dynamic scenarios, performing at least 8×8\times better than state-of-art localization systems. Additionally, we implement a MAC protocol to furnish these locations for over 1010 tags at update rates of 100100 Hz, with a localization latency of 1\sim 1 ms

    Enhanced 3D localisation accuracy of body-mounted miniature antennas using ultra-wideband technology in line-of-sight scenarios

    Get PDF
    This study presents experimental investigations on high-precision localisation methods of body-worn miniature antennas using ultra-wideband (UWB) technology in line-of-sight conditions. Time of arrival data fusion and peak detection techniques are implemented to estimate the three-dimensional (3D) location of the transmitting tags in terms of x, y, z Cartesian coordinates. Several pseudo-dynamic experiments have been performed by moving the tag antenna in various directions and the precision with which these slight movements could be resolved has been presented. Some more complex localisation experiments have also been undertaken, which involved the tracking of two transmitter tags simultaneously. Excellent 3D localisation accuracy in the range of 1-4 cm has been achieved in various experiment settings. A novel approach for achieving subcentimetre 3D localisation accuracy from UWB technology has been proposed and demonstrated successfully. In this approach, the phase centre information of the antennas in a UWB localisation system is utilised in position estimation to drastically improve the accuracy of the localisation measurements to millimetre levels. By using this technique, the average localisation error has been reduced by 86, 31, and 72% for the x-, y-, and z-axis coordinates, respectively.Published versio

    Accurate position tracking with a single UWB anchor

    Full text link
    Accurate localization and tracking are a fundamental requirement for robotic applications. Localization systems like GPS, optical tracking, simultaneous localization and mapping (SLAM) are used for daily life activities, research, and commercial applications. Ultra-wideband (UWB) technology provides another venue to accurately locate devices both indoors and outdoors. In this paper, we study a localization solution with a single UWB anchor, instead of the traditional multi-anchor setup. Besides the challenge of a single UWB ranging source, the only other sensor we require is a low-cost 9 DoF inertial measurement unit (IMU). Under such a configuration, we propose continuous monitoring of UWB range changes to estimate the robot speed when moving on a line. Combining speed estimation with orientation estimation from the IMU sensor, the system becomes temporally observable. We use an Extended Kalman Filter (EKF) to estimate the pose of a robot. With our solution, we can effectively correct the accumulated error and maintain accurate tracking of a moving robot.Comment: Accepted by ICRA202
    corecore