949 research outputs found

    A High Speed Networked Signal Processing Platform for Multi-element Radio Telescopes

    Get PDF
    A new architecture is presented for a Networked Signal Processing System (NSPS) suitable for handling the real-time signal processing of multi-element radio telescopes. In this system, a multi-element radio telescope is viewed as an application of a multi-sensor, data fusion problem which can be decomposed into a general set of computing and network components for which a practical and scalable architecture is enabled by current technology. The need for such a system arose in the context of an ongoing program for reconfiguring the Ooty Radio Telescope (ORT) as a programmable 264-element array, which will enable several new observing capabilities for large scale surveys on this mature telescope. For this application, it is necessary to manage, route and combine large volumes of data whose real-time collation requires large I/O bandwidths to be sustained. Since these are general requirements of many multi-sensor fusion applications, we first describe the basic architecture of the NSPS in terms of a Fusion Tree before elaborating on its application for the ORT. The paper addresses issues relating to high speed distributed data acquisition, Field Programmable Gate Array (FPGA) based peer-to-peer networks supporting significant on-the fly processing while routing, and providing a last mile interface to a typical commodity network like Gigabit Ethernet. The system is fundamentally a pair of two co-operative networks, among which one is part of a commodity high performance computer cluster and the other is based on Commercial-Off The-Shelf (COTS) technology with support from software/firmware components in the public domain.Comment: 19 pages, 4 eps figures, To be published in Experimental Astronomy (Springer

    Cooperative Vehicle Tracking in Large Environments

    Get PDF
    Vehicle position tracking and prediction over large areas is of significant importance in many industrial applications, such as mining operations. In a small area, this can be easily achieved by providing vehicles with a constant communication link to a control centre and having the vehicles broadcast their position. The problem changes dramatically when vehicles operate within a large environment of potentially hundreds of square kilometres and in difficult terrain. This thesis presents algorithms for cooperative tracking of vehicles based on a vehicle motion model that incorporates the properties of the working area, and information collected by infrastructure collection points and other mobile agents. The probabilistic motion prediction approach provides long-term estimates of vehicle positions using motion profiles built for the particular environment and considering the vehicle stopping probability. A limited number of data collection points distributed around the field are used to update the position estimates, with negative information also used to improve the estimation. The thesis introduces the concept of observation harvesting, a process in which peer-to-peer communication between vehicles allows egocentric position updates and inter-vehicle measurements to be relayed among vehicles and finally conveyed to the collection points for an improved position estimate. It uses a store-and-synchronise concept to deal with intermittent communication and aims to disseminate data in an opportunistic manner. A nonparametric filtering algorithm for cooperative tracking is proposed to incorporate the information harvested, including the negative, relative, and time delayed observations. An important contribution of this thesis is to enable the optimisation of fleet scheduling when full coverage networks are not available or feasible. The proposed approaches were validated with comprehensive experimental results using data collected from a large-scale mining operation

    Cooperative Vehicle Tracking in Large Environments

    Get PDF
    Vehicle position tracking and prediction over large areas is of significant importance in many industrial applications, such as mining operations. In a small area, this can be easily achieved by providing vehicles with a constant communication link to a control centre and having the vehicles broadcast their position. The problem changes dramatically when vehicles operate within a large environment of potentially hundreds of square kilometres and in difficult terrain. This thesis presents algorithms for cooperative tracking of vehicles based on a vehicle motion model that incorporates the properties of the working area, and information collected by infrastructure collection points and other mobile agents. The probabilistic motion prediction approach provides long-term estimates of vehicle positions using motion profiles built for the particular environment and considering the vehicle stopping probability. A limited number of data collection points distributed around the field are used to update the position estimates, with negative information also used to improve the estimation. The thesis introduces the concept of observation harvesting, a process in which peer-to-peer communication between vehicles allows egocentric position updates and inter-vehicle measurements to be relayed among vehicles and finally conveyed to the collection points for an improved position estimate. It uses a store-and-synchronise concept to deal with intermittent communication and aims to disseminate data in an opportunistic manner. A nonparametric filtering algorithm for cooperative tracking is proposed to incorporate the information harvested, including the negative, relative, and time delayed observations. An important contribution of this thesis is to enable the optimisation of fleet scheduling when full coverage networks are not available or feasible. The proposed approaches were validated with comprehensive experimental results using data collected from a large-scale mining operation

    A stochastic method for representation, modelling and fusion of excavated material in mining

    Get PDF
    The ability to safely and economically extract raw materials such as iron ore from a greater number of remote, isolated and possibly dangerous locations will become more pressing over the coming decades as easily accessible deposits become depleted. An autonomous mining system has the potential to make the mining process more efficient, predictable and safe under these changing conditions. One of the key parts of the mining process is the estimation and tracking of bulk material through the mining production chain. Current state-of-the-art tracking and estimation systems use a deterministic representation for bulk material. This is problematic for wide-scale automation of mine processes as there is no measurement of the uncertainty in the estimates provided. A probabilistic representation is critical for autonomous systems to correctly interpret and fuse the available data in order to make the most informed decision given the available information without human intervention. This thesis investigates whether bulk material properties can be represented probabilistically through a mining production chain to provide statistically consistent estimates of the material at each stage of the production chain. Experiments and methods within this thesis focus on the load-haul-dump cycle. The development of a representation of bulk material using lumped masses is presented. A method for tracking and estimation of these lumped masses within the mining production chain using an 'Augmented State Kalman Filter' (ASKF) is developed. The method ensures that the fusion of new information at different stages will provide statistically consistent estimates of the lumped mass. There is a particular focus on the feasibility and practicality of implementing a solution on a production mine site given the current sensing technology available and how it can be adapted for use within the developed estimation system (with particular focus on remote sensing and volume estimation)

    Doctor of Philosophy

    Get PDF
    dissertationThe Active Traffic and Demand Management (ATDM) initiative aims to integrate various management strategies and control measures so as to achieve the mobility, environment and sustainability goals. To support the active monitoring and management of real-world complex traffic conditions, the first objective of this dissertation is to develop a travel time reliability estimation and prediction methodology that can provide informed decisions for the management and operation agencies and travelers. A systematic modeling framework was developed to consider a corridor with multiple bottlenecks, and a series of close-form formulas was derived to quantify the travel time distribution under both stochastic demand and capacity, with possible on-ramp and off-ramp flow changes. Traffic state estimation techniques are often used to guide operational management decisions, and accurate traffic estimates are critically needed in ATDM applications designed for reducing instability, volatility and emissions in the transportation system. By capturing the essential forward and backward wave propagation characteristics under possible random measurement errors, this dissertation proposes a unified representation with a simple but theoretically sound explanation for traffic observations under free-flow, congested and dynamic transient conditions. This study also presents a linear programming model to quantify the value of traffic measurements, in a heterogeneous data environment with fixed sensors, Bluetooth readers and GPS sensors. It is important to design comprehensive traffic control measures that can systematically address deteriorating congestion and environmental issues. To better evaluate and assess the mobility and environmental benefits of the transportation improvement plans, this dissertation also discusses a cross-resolution modeling framework for integrating a microscopic emission model with the existing mesoscopic traffic simulation model. A simplified car-following model-based vehicle trajectory construction method is used to generate the high-resolution vehicle trajectory profiles and resulting emission output. In addition, this dissertation discusses a number of important issues for a cloud computing-based software system implementation. A prototype of a reliability-based traveler information provision and dissemination system is developed to offer a rich set of travel reliability information for the general public and traffic management and planning organizations

    Truck Activity Pattern Classification Using Anonymous Mobile Sensor Data

    Get PDF
    To construct, operate, and maintain a transportation system that supports the efficient movement of freight, transportation agencies must understand economic drivers of freight flow. This is a challenge since freight movement data available to transportation agencies is typically void of commodity and industry information, factors that tie freight movements to underlying economic conditions. With recent advances in the resolution and availability of big data from Global Positioning Systems (GPS), it may be possible to fill this critical freight data gap. However, there is a need for methodological approaches to enable usage of this data for freight planning and operations. To address this methodological need, we use advanced machine-learning techniques and spatial analyses to classify trucks by industry based on activity patterns derived from large streams of truck GPS data. The major components are: (1) derivation of truck activity patterns from anonymous GPS traces, (2) development of a classification model to distinguish trucks by industry, and (3) estimation of a spatio-temporal regression model to capture rerouting behavior of trucks. First, we developed a K-means unsupervised clustering algorithm to find unique and representative daily activity patterns from GPS data. For a statewide GPS data sample, we are able to reduce over 300,000 daily patterns to a representative six patterns, thus enabling easier calibration and validation of the travel forecasting models that rely on detailed activity patterns. Next, we developed a Random Forest supervised machine learning model to classify truck daily activity patterns by industry served. The model predicts five distinct industry classes, i.e., farm products, manufacturing, chemicals, mining, and miscellaneous mixed, with 90% accuracy, filling a critical gap in our ability to tie truck movements to industry served. This ultimately allows us to build travel demand forecasting models with behavioral sensitivity. Finally, we developed a spatio-temporal model to capture truck rerouting behaviors due to weather events. The ability to model re-routing behaviors allows transportation agencies to identify operational and planning solutions that mitigate the impacts of weather on truck traffic. For freight industries, the prediction of weather impacts on truck driver’s route choices can inform a more accurate estimation of billable miles

    SNAP : A Software-Defined & Named-Data Oriented Publish-Subscribe Framework for Emerging Wireless Application Systems

    Get PDF
    The evolution of Cyber-Physical Systems (CPSs) has given rise to an emergent class of CPSs defined by ad-hoc wireless connectivity, mobility, and resource constraints in computation, memory, communications, and battery power. These systems are expected to fulfill essential roles in critical infrastructure sectors. Vehicular Ad-Hoc Network (VANET) and a swarm of Unmanned Aerial Vehicles (UAV swarm) are examples of such systems. The significant utility of these systems, coupled with their economic viability, is a crucial indicator of their anticipated growth in the future. Typically, the tasks assigned to these systems have strict Quality-of-Service (QoS) requirements and require sensing, perception, and analysis of a substantial amount of data. To fulfill these QoS requirements, the system requires network connectivity, data dissemination, and data analysis methods that can operate well within a system\u27s limitations. Traditional Internet protocols and methods for network connectivity and data dissemination are typically designed for well-engineering cyber systems and do not comprehensively support this new breed of emerging systems. The imminent growth of these CPSs presents an opportunity to develop broadly applicable methods that can meet the stated system requirements for a diverse range of systems and integrate these systems with the Internet. These methods could potentially be standardized to achieve interoperability among various systems of the future. This work presents a solution that can fulfill the communication and data dissemination requirements of a broad class of emergent CPSs. The two main contributions of this work are the Application System (APPSYS) system abstraction, and a complementary communications framework called the Software-Defined NAmed-data enabled Publish-Subscribe (SNAP) communication framework. An APPSYS is a new breed of Internet application representing the mobile and resource-constrained CPSs supporting data-intensive and QoS-sensitive safety-critical tasks, referred to as the APPSYS\u27s mission. The functioning of the APPSYS is closely aligned with the needs of the mission. The standard APPSYS architecture is distributed and partitions the system into multiple clusters where each cluster is a hierarchical sub-network. The SNAP communication framework within the APPSYS utilized principles of Information-Centric Networking (ICN) through the publish-subscribe communication paradigm. It further extends the role of brokers within the publish-subscribe paradigm to create a distributed software-defined control plane. The SNAP framework leverages the APPSYS design characteristics to provide flexible and robust communication and dynamic and distributed control-plane decision-making that successfully allows the APPSYS to meet the communication requirements of data-oriented and QoS-sensitive missions. In this work, we present the design, implementation, and performance evaluation of an APPSYS through an exemplar UAV swarm APPSYS. We evaluate the benefits offered by the APPSYS design and the SNAP communication framework in meeting the dynamically changed requirements of a data-intensive and QoS-sensitive Coordinated Search and Tracking (CSAT) mission operating in a UAV swarm APPSYS on the battlefield. Results from the performance evaluation demonstrate that the UAV swarm APPSYS successfully monitors and mitigates network impairment impacting a mission\u27s QoS to support the mission\u27s QoS requirements

    Taming and Leveraging Directionality and Blockage in Millimeter Wave Communications

    Get PDF
    To cope with the challenge for high-rate data transmission, Millimeter Wave(mmWave) is one potential solution. The short wavelength unlatched the era of directional mobile communication. The semi-optical communication requires revolutionary thinking. To assist the research and evaluate various algorithms, we build a motion-sensitive mmWave testbed with two degrees of freedom for environmental sensing and general wireless communication.The first part of this thesis contains two approaches to maintain the connection in mmWave mobile communication. The first one seeks to solve the beam tracking problem using motion sensor within the mobile device. A tracking algorithm is given and integrated into the tracking protocol. Detailed experiments and numerical simulations compared several compensation schemes with optical benchmark and demonstrated the efficiency of overhead reduction. The second strategy attempts to mitigate intermittent connections during roaming is multi-connectivity. Taking advantage of properties of rateless erasure code, a fountain code type multi-connectivity mechanism is proposed to increase the link reliability with simplified backhaul mechanism. The simulation demonstrates the efficiency and robustness of our system design with a multi-link channel record.The second topic in this thesis explores various techniques in blockage mitigation. A fast hear-beat like channel with heavy blockage loss is identified in the mmWave Unmanned Aerial Vehicle (UAV) communication experiment due to the propeller blockage. These blockage patterns are detected through Holm\u27s procedure as a problem of multi-time series edge detection. To reduce the blockage effect, an adaptive modulation and coding scheme is designed. The simulation results show that it could greatly improve the throughput given appropriately predicted patterns. The last but not the least, the blockage of directional communication also appears as a blessing because the geometrical information and blockage event of ancillary signal paths can be utilized to predict the blockage timing for the current transmission path. A geometrical model and prediction algorithm are derived to resolve the blockage time and initiate active handovers. An experiment provides solid proof of multi-paths properties and the numeral simulation demonstrates the efficiency of the proposed algorithm

    Space-division Multiplexed Optical Transmission enabled by Advanced Digital Signal Processing

    Get PDF
    corecore