579 research outputs found

    Cognitive Robotics in Industrial Environments

    Get PDF

    Miniature mobile sensor platforms for condition monitoring of structures

    Get PDF
    In this paper, a wireless, multisensor inspection system for nondestructive evaluation (NDE) of materials is described. The sensor configuration enables two inspection modes-magnetic (flux leakage and eddy current) and noncontact ultrasound. Each is designed to function in a complementary manner, maximizing the potential for detection of both surface and internal defects. Particular emphasis is placed on the generic architecture of a novel, intelligent sensor platform, and its positioning on the structure under test. The sensor units are capable of wireless communication with a remote host computer, which controls manipulation and data interpretation. Results are presented in the form of automatic scans with different NDE sensors in a series of experiments on thin plate structures. To highlight the advantage of utilizing multiple inspection modalities, data fusion approaches are employed to combine data collected by complementary sensor systems. Fusion of data is shown to demonstrate the potential for improved inspection reliability

    Multi Sensor Fusion Based Framework For Efficient Mobile Robot Collision Avoidance and Path Following System

    Get PDF
    The field of autonomous mobile robotics has recently gained the interests of many researchers. Due to the specific needs required by various applications of mobile robot systems (especially in navigation), designing a real-time obstacle avoidance and path following robot system has become the backbone of controlling robots in unknown environments. Therefore, an efficient collision avoidance and path following methodology is needed to develop an intelligent and effective autonomous mobile robot system. Mobile robots are equipped with various types of sensors (such as GPS, camera, infrared and ultrasonic sensors); these sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. A new technique for line following and collision avoidance in the mobile robotic systems is introduced. The proposed technique relies on the use of infrared sensors and involves a reasonable level of calculations, to be easily used in real-time control applications. In addition, a fusion model based on fuzzy logic is proposed. Eight distance sensors and a range finder camera are used for the collision avoidance approach, where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs (which are the eight distance sensors and the camera), two outputs (which are the left and right velocities of the mobile robot’s wheels), and twenty four fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and robot to show the ability of the robot to follow a path, detect obstacles, and navigate around them to avoid collision. It also shows that the robot has been successfully following extremely congested curves and has avoided any obstacle that emerged on its path. The proposed methodology which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real-time experiments. Various scenarios have been presented with static and dynamic obstacles, using one and multiple robots while avoiding obstacles in different shapes and sizes. The proposed methodology reduced the traveled distance of the mobile robot, as well as minimized the energy consumption and the distance between the robot and the obstacle detected as compared to a non-fuzzy logic approach

    An Approach of Fuzzy Logic H∞ Filter in Mobile Robot Navigation Considering Non-Gaussian Noise

    Get PDF
    This chapter has presented an analysis of H∞ filter‐based mobile robot navigation with fuzzy logic to tolerate in non‐Gaussian noise conditions. The technique exploits the information obtained through H∞ filter measurement innovation to reduce the noises or the uncertainties during mobile robot observations. The simulation results depicted that the proposed technique has improved the mobile robot estimation as well as any landmark being observed. Different aspects such as γ values, noise parameters, intermittent measurement data lost and finite escape time issues are also analysed to investigate their effects in estimation. Different fuzzy logic design configurations were also studied to achieve better estimation results. As demonstrated in this work, fuzzy logic offers reliable estimation results compared to the conventional technique
    corecore