44 research outputs found

    Cross-Spectral Full and Partial Face Recognition: Preprocessing, Feature Extraction and Matching

    Get PDF
    Cross-spectral face recognition remains a challenge in the area of biometrics. The problem arises from some real-world application scenarios such as surveillance at night time or in harsh environments, where traditional face recognition techniques are not suitable or limited due to usage of imagery obtained in the visible light spectrum. This motivates the study conducted in the dissertation which focuses on matching infrared facial images against visible light images. The study outspreads from aspects of face recognition such as preprocessing to feature extraction and to matching.;We address the problem of cross-spectral face recognition by proposing several new operators and algorithms based on advanced concepts such as composite operators, multi-level data fusion, image quality parity, and levels of measurement. To be specific, we experiment and fuse several popular individual operators to construct a higher-performed compound operator named GWLH which exhibits complementary advantages of involved individual operators. We also combine a Gaussian function with LBP, generalized LBP, WLD and/or HOG and modify them into multi-lobe operators with smoothed neighborhood to have a new type of operators named Composite Multi-Lobe Descriptors. We further design a novel operator termed Gabor Multi-Levels of Measurement based on the theory of levels of measurements, which benefits from taking into consideration the complementary edge and feature information at different levels of measurements.;The issue of image quality disparity is also studied in the dissertation due to its common occurrence in cross-spectral face recognition tasks. By bringing the quality of heterogeneous imagery closer to each other, we successfully achieve an improvement in the recognition performance. We further study the problem of cross-spectral recognition using partial face since it is also a common problem in practical usage. We begin with matching heterogeneous periocular regions and generalize the topic by considering all three facial regions defined in both a characteristic way and a mixture way.;In the experiments we employ datasets which include all the sub-bands within the infrared spectrum: near-infrared, short-wave infrared, mid-wave infrared, and long-wave infrared. Different standoff distances varying from short to intermediate and long are considered too. Our methods are compared with other popular or state-of-the-art methods and are proven to be advantageous

    Deep-PRWIS: Periocular Recognition Without the Iris and Sclera Using Deep Learning Frameworks

    Get PDF
    This work is based on a disruptive hypothesisfor periocular biometrics: in visible-light data, the recognitionperformance is optimized when the components inside the ocularglobe (the iris and the sclera) are simply discarded, and therecogniser’s response is exclusively based in information fromthe surroundings of the eye. As major novelty, we describe aprocessing chain based on convolution neural networks (CNNs)that defines the regions-of-interest in the input data that should beprivileged in an implicit way, i.e., without masking out any areasin the learning/test samples. By using an ocular segmentationalgorithm exclusively in the learning data, we separate the ocularfrom the periocular parts. Then, we produce a large set of”multi-class” artificial samples, by interchanging the periocularand ocular parts from different subjects. These samples areused for data augmentation purposes and feed the learningphase of the CNN, always considering as label the ID of theperiocular part. This way, for every periocular region, the CNNreceives multiple samples of different ocular classes, forcing itto conclude that such regions should not be considered in itsresponse. During the test phase, samples are provided withoutany segmentation mask and the networknaturallydisregardsthe ocular components, which contributes for improvements inperformance. Our experiments were carried out in full versionsof two widely known data sets (UBIRIS.v2 and FRGC) and showthat the proposed method consistently advances the state-of-the-art performance in theclosed-worldsetting, reducing the EERsin about 82% (UBIRIS.v2) and 85% (FRGC) and improving theRank-1 over 41% (UBIRIS.v2) and 12% (FRGC).info:eu-repo/semantics/publishedVersio

    Periocular in the Wild Embedding Learning with Cross-Modal Consistent Knowledge Distillation

    Full text link
    Periocular biometric, or peripheral area of ocular, is a collaborative alternative to face, especially if a face is occluded or masked. In practice, sole periocular biometric captures least salient facial features, thereby suffering from intra-class compactness and inter-class dispersion issues particularly in the wild environment. To address these problems, we transfer useful information from face to support periocular modality by means of knowledge distillation (KD) for embedding learning. However, applying typical KD techniques to heterogeneous modalities directly is suboptimal. We put forward in this paper a deep face-to-periocular distillation networks, coined as cross-modal consistent knowledge distillation (CM-CKD) henceforward. The three key ingredients of CM-CKD are (1) shared-weight networks, (2) consistent batch normalization, and (3) a bidirectional consistency distillation for face and periocular through an effectual CKD loss. To be more specific, we leverage face modality for periocular embedding learning, but only periocular images are targeted for identification or verification tasks. Extensive experiments on six constrained and unconstrained periocular datasets disclose that the CM-CKD-learned periocular embeddings extend identification and verification performance by 50% in terms of relative performance gain computed based upon face and periocular baselines. The experiments also reveal that the CM-CKD-learned periocular features enjoy better subject-wise cluster separation, thereby refining the overall accuracy performance.Comment: 30 page

    Improving Iris Recognition through Quality and Interoperability Metrics

    Get PDF
    The ability to identify individuals based on their iris is known as iris recognition. Over the past decade iris recognition has garnered much attention because of its strong performance in comparison with other mainstream biometrics such as fingerprint and face recognition. Performance of iris recognition systems is driven by application scenario requirements. Standoff distance, subject cooperation, underlying optics, and illumination are a few examples of these requirements which dictate the nature of images an iris recognition system has to process. Traditional iris recognition systems, dubbed stop and stare , operate under highly constrained conditions. This ensures that the captured image is of sufficient quality so that the success of subsequent processing stages, segmentation, encoding, and matching are not compromised. When acquisition constraints are relaxed, such as for surveillance or iris on the move, the fidelity of subsequent processing steps lessens.;In this dissertation we propose a multi-faceted framework for mitigating the difficulties associated with non-ideal iris. We develop and investigate a comprehensive iris image quality metric that is predictive of iris matching performance. The metric is composed of photometric measures such as defocus, motion blur, and illumination, but also contains domain specific measures such as occlusion, and gaze angle. These measures are then combined through a fusion rule based on Dempster-Shafer theory. Related to iris segmentation, which is arguably one of the most important tasks in iris recognition, we develop metrics which are used to evaluate the precision of the pupil and iris boundaries. Furthermore, we illustrate three methods which take advantage of the proposed segmentation metrics for rectifying incorrect segmentation boundaries. Finally, we look at the issue of iris image interoperability and demonstrate that techniques from the field of hardware fingerprinting can be utilized to improve iris matching performance when images captured from distinct sensors are involved

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Ear Biometrics: A Comprehensive Study of Taxonomy, Detection, and Recognition Methods

    Get PDF
    Due to the recent challenges in access control, surveillance and security, there is an increased need for efficient human authentication solutions. Ear recognition is an appealing choice to identify individuals in controlled or challenging environments. The outer part of the ear demonstrates high discriminative information across individuals and has shown to be robust for recognition. In addition, the data acquisition procedure is contactless, non-intrusive, and covert. This work focuses on using ear images for human authentication in visible and thermal spectrums. We perform a systematic study of the ear features and propose a taxonomy for them. Also, we investigate the parts of the head side view that provides distinctive identity cues. Following, we study the different modules of the ear recognition system. First, we propose an ear detection system that uses deep learning models. Second, we compare machine learning methods to state traditional systems\u27 baseline ear recognition performance. Third, we explore convolutional neural networks for ear recognition and the optimum learning process setting. Fourth, we systematically evaluate the performance in the presence of pose variation or various image artifacts, which commonly occur in real-life recognition applications, to identify the robustness of the proposed ear recognition models. Additionally, we design an efficient ear image quality assessment tool to guide the ear recognition system. Finally, we extend our work for ear recognition in the long-wave infrared domains
    corecore