153 research outputs found

    Box-level Segmentation Supervised Deep Neural Networks for Accurate and Real-time Multispectral Pedestrian Detection

    Get PDF
    Effective fusion of complementary information captured by multi-modal sensors (visible and infrared cameras) enables robust pedestrian detection under various surveillance situations (e.g. daytime and nighttime). In this paper, we present a novel box-level segmentation supervised learning framework for accurate and real-time multispectral pedestrian detection by incorporating features extracted in visible and infrared channels. Specifically, our method takes pairs of aligned visible and infrared images with easily obtained bounding box annotations as input and estimates accurate prediction maps to highlight the existence of pedestrians. It offers two major advantages over the existing anchor box based multispectral detection methods. Firstly, it overcomes the hyperparameter setting problem occurred during the training phase of anchor box based detectors and can obtain more accurate detection results, especially for small and occluded pedestrian instances. Secondly, it is capable of generating accurate detection results using small-size input images, leading to improvement of computational efficiency for real-time autonomous driving applications. Experimental results on KAIST multispectral dataset show that our proposed method outperforms state-of-the-art approaches in terms of both accuracy and speed

    Unsupervised Domain Adaptation for Multispectral Pedestrian Detection

    Get PDF
    Multimodal information (e.g., visible and thermal) can generate robust pedestrian detections to facilitate around-the-clock computer vision applications, such as autonomous driving and video surveillance. However, it still remains a crucial challenge to train a reliable detector working well in different multispectral pedestrian datasets without manual annotations. In this paper, we propose a novel unsupervised domain adaptation framework for multispectral pedestrian detection, by iteratively generating pseudo annotations and updating the parameters of our designed multispectral pedestrian detector on target domain. Pseudo annotations are generated using the detector trained on source domain, and then updated by fixing the parameters of detector and minimizing the cross entropy loss without back-propagation. Training labels are generated using the pseudo annotations by considering the characteristics of similarity and complementarity between well-aligned visible and infrared image pairs. The parameters of detector are updated using the generated labels by minimizing our defined multi-detection loss function with back-propagation. The optimal parameters of detector can be obtained after iteratively updating the pseudo annotations and parameters. Experimental results show that our proposed unsupervised multimodal domain adaptation method achieves significantly higher detection performance than the approach without domain adaptation, and is competitive with the supervised multispectral pedestrian detectors

    TFDet: Target-aware Fusion for RGB-T Pedestrian Detection

    Full text link
    Pedestrian detection plays a critical role in computer vision as it contributes to ensuring traffic safety. Existing methods that rely solely on RGB images suffer from performance degradation under low-light conditions due to the lack of useful information. To address this issue, recent multispectral detection approaches have combined thermal images to provide complementary information and have obtained enhanced performances. Nevertheless, few approaches focus on the negative effects of false positives caused by noisy fused feature maps. Different from them, we comprehensively analyze the impacts of false positives on the detection performance and find that enhancing feature contrast can significantly reduce these false positives. In this paper, we propose a novel target-aware fusion strategy for multispectral pedestrian detection, named TFDet. Our fusion strategy highlights the pedestrian-related features while suppressing unrelated ones, resulting in more discriminative fused features. TFDet achieves state-of-the-art performance on both KAIST and LLVIP benchmarks, with an efficiency comparable to the previous state-of-the-art counterpart. Importantly, TFDet performs remarkably well even under low-light conditions, which is a significant advancement for ensuring road safety. The code will be made publicly available at \url{https://github.com/XueZ-phd/TFDet.git}
    • …
    corecore