2,516 research outputs found

    Vision-based Human Gender Recognition: A Survey

    Full text link
    Gender is an important demographic attribute of people. This paper provides a survey of human gender recognition in computer vision. A review of approaches exploiting information from face and whole body (either from a still image or gait sequence) is presented. We highlight the challenges faced and survey the representative methods of these approaches. Based on the results, good performance have been achieved for datasets captured under controlled environments, but there is still much work that can be done to improve the robustness of gender recognition under real-life environments.Comment: 30 page

    A Survey on Periocular Biometrics Research

    Full text link
    Periocular refers to the facial region in the vicinity of the eye, including eyelids, lashes and eyebrows. While face and irises have been extensively studied, the periocular region has emerged as a promising trait for unconstrained biometrics, following demands for increased robustness of face or iris systems. With a surprisingly high discrimination ability, this region can be easily obtained with existing setups for face and iris, and the requirement of user cooperation can be relaxed, thus facilitating the interaction with biometric systems. It is also available over a wide range of distances even when the iris texture cannot be reliably obtained (low resolution) or under partial face occlusion (close distances). Here, we review the state of the art in periocular biometrics research. A number of aspects are described, including: i) existing databases, ii) algorithms for periocular detection and/or segmentation, iii) features employed for recognition, iv) identification of the most discriminative regions of the periocular area, v) comparison with iris and face modalities, vi) soft-biometrics (gender/ethnicity classification), and vii) impact of gender transformation and plastic surgery on the recognition accuracy. This work is expected to provide an insight of the most relevant issues in periocular biometrics, giving a comprehensive coverage of the existing literature and current state of the art.Comment: Published in Pattern Recognition Letter

    Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect-related Applications

    Full text link
    Facial expressions are an important way through which humans interact socially. Building a system capable of automatically recognizing facial expressions from images and video has been an intense field of study in recent years. Interpreting such expressions remains challenging and much research is needed about the way they relate to human affect. This paper presents a general overview of automatic RGB, 3D, thermal and multimodal facial expression analysis. We define a new taxonomy for the field, encompassing all steps from face detection to facial expression recognition, and describe and classify the state of the art methods accordingly. We also present the important datasets and the bench-marking of most influential methods. We conclude with a general discussion about trends, important questions and future lines of research

    Attended End-to-end Architecture for Age Estimation from Facial Expression Videos

    Full text link
    The main challenges of age estimation from facial expression videos lie not only in the modeling of the static facial appearance, but also in the capturing of the temporal facial dynamics. Traditional techniques to this problem focus on constructing handcrafted features to explore the discriminative information contained in facial appearance and dynamics separately. This relies on sophisticated feature-refinement and framework-design. In this paper, we present an end-to-end architecture for age estimation, called Spatially-Indexed Attention Model (SIAM), which is able to simultaneously learn both the appearance and dynamics of age from raw videos of facial expressions. Specifically, we employ convolutional neural networks to extract effective latent appearance representations and feed them into recurrent networks to model the temporal dynamics. More importantly, we propose to leverage attention models for salience detection in both the spatial domain for each single image and the temporal domain for the whole video as well. We design a specific spatially-indexed attention mechanism among the convolutional layers to extract the salient facial regions in each individual image, and a temporal attention layer to assign attention weights to each frame. This two-pronged approach not only improves the performance by allowing the model to focus on informative frames and facial areas, but it also offers an interpretable correspondence between the spatial facial regions as well as temporal frames, and the task of age estimation. We demonstrate the strong performance of our model in experiments on a large, gender-balanced database with 400 subjects with ages spanning from 8 to 76 years. Experiments reveal that our model exhibits significant superiority over the state-of-the-art methods given sufficient training data.Comment: Accepted by Transactions on Image Processing (TIP

    Region Attention Networks for Pose and Occlusion Robust Facial Expression Recognition

    Full text link
    Occlusion and pose variations, which can change facial appearance significantly, are two major obstacles for automatic Facial Expression Recognition (FER). Though automatic FER has made substantial progresses in the past few decades, occlusion-robust and pose-invariant issues of FER have received relatively less attention, especially in real-world scenarios. This paper addresses the real-world pose and occlusion robust FER problem with three-fold contributions. First, to stimulate the research of FER under real-world occlusions and variant poses, we build several in-the-wild facial expression datasets with manual annotations for the community. Second, we propose a novel Region Attention Network (RAN), to adaptively capture the importance of facial regions for occlusion and pose variant FER. The RAN aggregates and embeds varied number of region features produced by a backbone convolutional neural network into a compact fixed-length representation. Last, inspired by the fact that facial expressions are mainly defined by facial action units, we propose a region biased loss to encourage high attention weights for the most important regions. We validate our RAN and region biased loss on both our built test datasets and four popular datasets: FERPlus, AffectNet, RAF-DB, and SFEW. Extensive experiments show that our RAN and region biased loss largely improve the performance of FER with occlusion and variant pose. Our method also achieves state-of-the-art results on FERPlus, AffectNet, RAF-DB, and SFEW. Code and the collected test data will be publicly available.Comment: The test set and the code of this paper will be available at https://github.com/kaiwang960112/Challenge-condition-FER-datase

    Modeling of Facial Aging and Kinship: A Survey

    Full text link
    Computational facial models that capture properties of facial cues related to aging and kinship increasingly attract the attention of the research community, enabling the development of reliable methods for age progression, age estimation, age-invariant facial characterization, and kinship verification from visual data. In this paper, we review recent advances in modeling of facial aging and kinship. In particular, we provide an up-to date, complete list of available annotated datasets and an in-depth analysis of geometric, hand-crafted, and learned facial representations that are used for facial aging and kinship characterization. Moreover, evaluation protocols and metrics are reviewed and notable experimental results for each surveyed task are analyzed. This survey allows us to identify challenges and discuss future research directions for the development of robust facial models in real-world conditions

    HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition

    Full text link
    We present an algorithm for simultaneous face detection, landmarks localization, pose estimation and gender recognition using deep convolutional neural networks (CNN). The proposed method called, HyperFace, fuses the intermediate layers of a deep CNN using a separate CNN followed by a multi-task learning algorithm that operates on the fused features. It exploits the synergy among the tasks which boosts up their individual performances. Additionally, we propose two variants of HyperFace: (1) HyperFace-ResNet that builds on the ResNet-101 model and achieves significant improvement in performance, and (2) Fast-HyperFace that uses a high recall fast face detector for generating region proposals to improve the speed of the algorithm. Extensive experiments show that the proposed models are able to capture both global and local information in faces and performs significantly better than many competitive algorithms for each of these four tasks.Comment: Accepted in Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Deep Facial Expression Recognition: A Survey

    Full text link
    With the transition of facial expression recognition (FER) from laboratory-controlled to challenging in-the-wild conditions and the recent success of deep learning techniques in various fields, deep neural networks have increasingly been leveraged to learn discriminative representations for automatic FER. Recent deep FER systems generally focus on two important issues: overfitting caused by a lack of sufficient training data and expression-unrelated variations, such as illumination, head pose and identity bias. In this paper, we provide a comprehensive survey on deep FER, including datasets and algorithms that provide insights into these intrinsic problems. First, we describe the standard pipeline of a deep FER system with the related background knowledge and suggestions of applicable implementations for each stage. We then introduce the available datasets that are widely used in the literature and provide accepted data selection and evaluation principles for these datasets. For the state of the art in deep FER, we review existing novel deep neural networks and related training strategies that are designed for FER based on both static images and dynamic image sequences, and discuss their advantages and limitations. Competitive performances on widely used benchmarks are also summarized in this section. We then extend our survey to additional related issues and application scenarios. Finally, we review the remaining challenges and corresponding opportunities in this field as well as future directions for the design of robust deep FER systems

    Pose-adaptive Hierarchical Attention Network for Facial Expression Recognition

    Full text link
    Multi-view facial expression recognition (FER) is a challenging task because the appearance of an expression varies in poses. To alleviate the influences of poses, recent methods either perform pose normalization or learn separate FER classifiers for each pose. However, these methods usually have two stages and rely on good performance of pose estimators. Different from existing methods, we propose a pose-adaptive hierarchical attention network (PhaNet) that can jointly recognize the facial expressions and poses in unconstrained environment. Specifically, PhaNet discovers the most relevant regions to the facial expression by an attention mechanism in hierarchical scales, and the most informative scales are then selected to learn the pose-invariant and expression-discriminative representations. PhaNet is end-to-end trainable by minimizing the hierarchical attention losses, the FER loss and pose loss with dynamically learned loss weights. We validate the effectiveness of the proposed PhaNet on three multi-view datasets (BU-3DFE, Multi-pie, and KDEF) and two in-the-wild FER datasets (AffectNet and SFEW). Extensive experiments demonstrate that our framework outperforms the state-of-the-arts under both within-dataset and cross-dataset settings, achieving the average accuracies of 84.92\%, 93.53\%, 88.5\%, 54.82\% and 31.25\% respectively.Comment: 12 pages, 15 figure

    Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis

    Full text link
    Photorealistic frontal view synthesis from a single face image has a wide range of applications in the field of face recognition. Although data-driven deep learning methods have been proposed to address this problem by seeking solutions from ample face data, this problem is still challenging because it is intrinsically ill-posed. This paper proposes a Two-Pathway Generative Adversarial Network (TP-GAN) for photorealistic frontal view synthesis by simultaneously perceiving global structures and local details. Four landmark located patch networks are proposed to attend to local textures in addition to the commonly used global encoder-decoder network. Except for the novel architecture, we make this ill-posed problem well constrained by introducing a combination of adversarial loss, symmetry loss and identity preserving loss. The combined loss function leverages both frontal face distribution and pre-trained discriminative deep face models to guide an identity preserving inference of frontal views from profiles. Different from previous deep learning methods that mainly rely on intermediate features for recognition, our method directly leverages the synthesized identity preserving image for downstream tasks like face recognition and attribution estimation. Experimental results demonstrate that our method not only presents compelling perceptual results but also outperforms state-of-the-art results on large pose face recognition.Comment: accepted at ICCV 2017, main paper & supplementary material, 11 page
    corecore