45 research outputs found

    Comparative Analysis of Image Fusion using DWT, PCA and BBF

    Get PDF
    Now-a-days, medical image fusion is one of the upcoming fields which helps in easy diagnostics and helps to bring down the time gap between the diagnosis of the disease and the treatment. In Magnetic Resonance Image (MRI), anatomy and soft tissues are visible and it has high spatial resolution. In Computed Tomography (CT) images bony structures appears brighter. Analysis is done to determine the image fusion algorithm which is more suitable for clinical diagnosis. Analysis is also done on image quality assessment parameters of image fusion. Image fusion is of extraordinary significance in safeguard and data from various images of same scene. It has been reasoned that image fusion utilizing wavelets with larger amount of disintegration indicated better execution in a few measurements and in different measurements PCA demonstrated better execution. We also illustrate different results based on all three methodology and compare results based on time and quality of images using PSNR

    Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    Get PDF
    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume

    Implementation of Image Fusion using DWT and PCA

    Get PDF
    Now-a-days, medical image fusion is one of the upcoming fields which helps in easy diagnostics and helps to bring down the time gap between the diagnosis of the disease and the treatment. In Magnetic Resonance Image (MRI), anatomy and soft tissues are visible and it has high spatial resolution. In Computed Tomography (CT) images bony structures appears brighter. Analysis is done to determine the image fusion algorithm which is more suitable for clinical diagnosis. Analysis is also done on image quality assessment parameters of image fusion. Image fusion is of extraordinary significance in safeguard and data from various images of same scene. It has been reasoned that image fusion utilizing wavelets with larger amount of disintegration indicated better execution in a few measurements and in different measurements PCA demonstrated better execution. We also illustrate different results based on all three methodology and compare results based on time and quality of images using PSNR

    SPITFIR(e): A supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos

    Get PDF
    International audienceModern fluorescent microscopy imaging is still limited by the optical aberrations and the photon budget available in the specimen. A direct consequence is the necessity to develop flexible and "off-road" algorithms in order to recover structural details and improve spatial resolution, which is critical when restraining the illumination to low levels in order to limit photo-damages. Here, we report SPITFIR(e) a flexible method designed to accurately and quickly restore 2D-3D fluorescence microscopy images and videos (4D images). We designed a generic sparse-promoting regularizer to subtract undesirable out-of-focus background and we developed a primal-dual algorithm for fast optimization. SPITFIR(e) is a "swiss-knife" method for practitioners as it adapts to any microscopy techniques, to various sources of signal degradation (noise, blur), to variable image contents, aswell as to low signal-to-noise ratios. Our method outperforms existing state-of-the-art algorithms, and is more flexible than supervised deep-learning methods requiring ground truth datasets. The performance, the flexibility, and the ability to push the spatiotemporal resolution limit of sub-diffracted fluorescence microscopy techniques are demonstrated on experimental datasets acquired with various microscopy techniques from 3D spinning-disk confocal up to lattice light sheet microscopy

    Superresolution fluorescence microscopy with structured illumination

    Get PDF
    The resolution of a conventional fluorescence microscope image is diffraction limited which achieves a spatial resolution of 200nm lateral and 500nm axial. Recently, many superresolution fluorescence microscopy techniques have been developed which allow the observation of many biological structures beyond the diffraction limit. Structured illumination microscopy (SIM) is one of them. The principle of SIM is based on using a harmonic light grid which down modulates the high spatial frequencies of the sample into the observable region of the microscope. The resolution enhancement is highly dependent on the reconstruction technique, which restores the high spatial frequencies of the sample to their original position. Common SIM reconstructions require the perfect knowledge of the illumination pattern. However, to perfectly control the harmonic illumination patterns on the sample plane is not easy in experimental implementations and this makes the experimental setup very technical. Reconstructing SIM images assuming the perfect knowledge of the illumination intensity patterns may, therefore, introduce artifacts on the estimated sample due to the misalignment of the grid that can occur during experimental acquisitions. To tackle this drawback of SIM, in this these, we have developed blind-SIM reconstruction strategies which are independent of the illumination patterns. Using the 3D blind-SIM reconstruction strategies we extended the harmonic SIM to speckle illumination microscopy which uses random unknown speckle patterns that need no control, unlike the harmonic grid patterns. For harmonic-SIM images, since incorporating some information about illumination patterns is valuable, we have developed a 3D positive filtered blind-SIM reconstruction which confines the iterative estimation of the illuminations in the vicinity of the Fourier peaks (using carefully designed Fourier filter masks) in the Fourier space. Using blind-SIM reconstruction techniques a lateral resolution of about 100nm and axial resolution of about 200nm is obtained in both speckle and harmonic SIM. In addition, to reduce the out-of-focus problem in widefield images, a simple computational technique which is based on reconstructing 2D data with 3D PSF is developed based on blind-SIM reconstruction. Moreover, to combine the functionalities of SIM and light sheet microscopy, as a proof of concept, we have developed a simple microscope setup which produces a structured light sheet illumination pattern.La microscopie de fluorescence optique est l’un des outils les plus puissants pour Ă©tudier les structures cellulaires et molĂ©culaires au niveau subcellulaire. La rĂ©solution d’une image de microscope conventionnel Ă  fluorescence est limitĂ©e par la diffraction, ce qui permet d’obtenir une rĂ©solution spatiale latĂ©rale de 200nm et axiale de 500nm. RĂ©cemment, de nombreuses techniques de microscopie de fluorescence de super-rĂ©solution ont Ă©tĂ© dĂ©veloppĂ©es pour permettre d’observer de nombreuses structures biologiques au-delĂ  de la limite de diffraction. La microscopie d’illumination structurĂ©e (SIM) est l’une de ces technologies. Le principe de la SIM est basĂ© sur l’utilisation d’une grille de lumiĂšre harmonique qui permet de translater les hautes frĂ©quences spatiales de l’échantillon vers la rĂ©gion d’observation du microscope. L’amĂ©lioration de la rĂ©solution de cette technologie de microscopie dĂ©pend fortement de la technique de reconstruction, qui rĂ©tablit les hautes frĂ©quences spatiales de l’échantillon dans leur position d’origine. Les mĂ©thodes classiques de reconstruction SIM nĂ©cessitent une connaissance parfaite de l’illumination de l’échantillon. Cependant, l’implĂ©mentation d’un contrĂŽle parfait de l’illumination harmonique sur le plan de l’échantillon n’est pas facile expĂ©rimentalement et il prĂ©sente un grand dĂ©fi. L’hypothĂšse de la connaissance parfaite de l’intensitĂ© de la lumiĂšre illuminant l’échantillon en SIM peut donc introduire des artefacts sur l’image reconstruite de l’échantillon, Ă  cause des erreurs d’alignement de la grille qui peuvent se prĂ©senter lors de l’acquisition expĂ©rimentale. Afin de surmonter ce dĂ©fi, nous avons dĂ©veloppĂ© dans cette thĂšse des stratĂ©gies de reconstruction «aveugle» qui sont indĂ©pendantes de d’illumination. À l’aide de ces stratĂ©gies de reconstruction dites «blind-SIM», nous avons Ă©tendu la SIM harmonique pour l’appliquer aux cas de «SIM-speckle» qui utilisent des illuminations alĂ©atoires et inconnues qui contrairement Ă  l’illumination harmonique, ne nĂ©cessitent pas de controle. Comme il est utile de rĂ©cupĂ©rer des informations sur l’illumination en SIM harmonique, nous avons dĂ©veloppĂ© une reconstruction blind-SIM tridimensionnel et filtrĂ©e qui confine l’estimation itĂ©rative des illuminations au voisinage des pics dans l’espace de Fourier, en utilisant des masques de filtre de Fourier soigneusement conçus. En utilisant des techniques de reconstruction blind-SIM, une rĂ©solution latĂ©rale d’environ 100 nm et une rĂ©solution axiale d’environ 200 nm sont obtenues, Ă  la fois en SIM harmonique et en SIM speckle. En outre, pour rĂ©duire le problĂšme de focalisation dans les images de champ large, une technique de calcul simple qui repose sur la reconstruction bidimensionnel de donnĂ©es Ă  partir de PSF tridimensionnel est dĂ©veloppĂ©e. En outre, afin de combiner Ă  la fois les fonctionnalitĂ©s de la SIM et de la microscopie ĂĄ nappe de lumiĂšre, en tant que preuve de concept, nous avons dĂ©veloppĂ© une configuration de microscope simple qui produit une nappe de lumiĂšre structurĂ©

    Superresolution fluorescence microscopy with structured illumination

    Get PDF
    Cotutela Universitat PolitĂšcnica de Catalunya i Aix-Marseille UniversitĂ©The resolution of a conventional fluorescence microscope image is diffraction limited which achieves a spatial resolution of 200nm lateral and 500nm axial. Recently, many superresolution fluorescence microscopy techniques have been developed which allow the observation of many biological structures beyond the diffraction limit. Structured illumination microscopy (SIM) is one of them. The principle of SIM is based on using a harmonic light grid which down modulates the high spatial frequencies of the sample into the observable region of the microscope. The resolution enhancement is highly dependent on the reconstruction technique, which restores the high spatial frequencies of the sample to their original position. Common SIM reconstructions require the perfect knowledge of the illumination pattern. However, to perfectly control the harmonic illumination patterns on the sample plane is not easy in experimental implementations and this makes the experimental setup very technical. Reconstructing SIM images assuming the perfect knowledge of the illumination intensity patterns may, therefore, introduce artifacts on the estimated sample due to the misalignment of the grid that can occur during experimental acquisitions. To tackle this drawback of SIM, in this these, we have developed blind-SIM reconstruction strategies which are independent of the illumination patterns. Using the 3D blind-SIM reconstruction strategies we extended the harmonic SIM to speckle illumination microscopy which uses random unknown speckle patterns that need no control, unlike the harmonic grid patterns. For harmonic-SIM images, since incorporating some information about illumination patterns is valuable, we have developed a 3D positive filtered blind-SIM reconstruction which confines the iterative estimation of the illuminations in the vicinity of the Fourier peaks (using carefully designed Fourier filter masks) in the Fourier space. Using blind-SIM reconstruction techniques a lateral resolution of about 100nm and axial resolution of about 200nm is obtained in both speckle and harmonic SIM. In addition, to reduce the out-of-focus problem in widefield images, a simple computational technique which is based on reconstructing 2D data with 3D PSF is developed based on blind-SIM reconstruction. Moreover, to combine the functionalities of SIM and light sheet microscopy, as a proof of concept, we have developed a simple microscope setup which produces a structured light sheet illumination pattern.La microscopie de fluorescence optique est l’un des outils les plus puissants pour Ă©tudier les structures cellulaires et molĂ©culaires au niveau subcellulaire. La rĂ©solution d’une image de microscope conventionnel Ă  fluorescence est limitĂ©e par la diffraction, ce qui permet d’obtenir une rĂ©solution spatiale latĂ©rale de 200nm et axiale de 500nm. RĂ©cemment, de nombreuses techniques de microscopie de fluorescence de super-rĂ©solution ont Ă©tĂ© dĂ©veloppĂ©es pour permettre d’observer de nombreuses structures biologiques au-delĂ  de la limite de diffraction. La microscopie d’illumination structurĂ©e (SIM) est l’une de ces technologies. Le principe de la SIM est basĂ© sur l’utilisation d’une grille de lumiĂšre harmonique qui permet de translater les hautes frĂ©quences spatiales de l’échantillon vers la rĂ©gion d’observation du microscope. L’amĂ©lioration de la rĂ©solution de cette technologie de microscopie dĂ©pend fortement de la technique de reconstruction, qui rĂ©tablit les hautes frĂ©quences spatiales de l’échantillon dans leur position d’origine. Les mĂ©thodes classiques de reconstruction SIM nĂ©cessitent une connaissance parfaite de l’illumination de l’échantillon. Cependant, l’implĂ©mentation d’un contrĂŽle parfait de l’illumination harmonique sur le plan de l’échantillon n’est pas facile expĂ©rimentalement et il prĂ©sente un grand dĂ©fi. L’hypothĂšse de la connaissance parfaite de l’intensitĂ© de la lumiĂšre illuminant l’échantillon en SIM peut donc introduire des artefacts sur l’image reconstruite de l’échantillon, Ă  cause des erreurs d’alignement de la grille qui peuvent se prĂ©senter lors de l’acquisition expĂ©rimentale. Afin de surmonter ce dĂ©fi, nous avons dĂ©veloppĂ© dans cette thĂšse des stratĂ©gies de reconstruction «aveugle» qui sont indĂ©pendantes de d’illumination. À l’aide de ces stratĂ©gies de reconstruction dites «blind-SIM», nous avons Ă©tendu la SIM harmonique pour l’appliquer aux cas de «SIM-speckle» qui utilisent des illuminations alĂ©atoires et inconnues qui contrairement Ă  l’illumination harmonique, ne nĂ©cessitent pas de controle. Comme il est utile de rĂ©cupĂ©rer des informations sur l’illumination en SIM harmonique, nous avons dĂ©veloppĂ© une reconstruction blind-SIM tridimensionnel et filtrĂ©e qui confine l’estimation itĂ©rative des illuminations au voisinage des pics dans l’espace de Fourier, en utilisant des masques de filtre de Fourier soigneusement conçus. En utilisant des techniques de reconstruction blind-SIM, une rĂ©solution latĂ©rale d’environ 100 nm et une rĂ©solution axiale d’environ 200 nm sont obtenues, Ă  la fois en SIM harmonique et en SIM speckle. En outre, pour rĂ©duire le problĂšme de focalisation dans les images de champ large, une technique de calcul simple qui repose sur la reconstruction bidimensionnel de donnĂ©es Ă  partir de PSF tridimensionnel est dĂ©veloppĂ©e. En outre, afin de combiner Ă  la fois les fonctionnalitĂ©s de la SIM et de la microscopie ĂĄ nappe de lumiĂšre, en tant que preuve de concept, nous avons dĂ©veloppĂ© une configuration de microscope simple qui produit une nappe de lumiĂšre structurĂ©ePostprint (published version

    Super-resolution structured illumination microscopy: past, present and future.

    Get PDF
    Structured illumination microscopy (SIM) has emerged as an essential technique for three-dimensional (3D) and live-cell super-resolution imaging. However, to date, there has not been a dedicated workshop or journal issue covering the various aspects of SIM, from bespoke hardware and software development and the use of commercial instruments to biological applications. This special issue aims to recap recent developments as well as outline future trends. In addition to SIM, we cover related topics such as complementary super-resolution microscopy techniques, computational imaging, visualization and image processing methods. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 1)'
    corecore