491 research outputs found

    Multi-observation PET image analysis for patient follow-up quantitation and therapy assessment.: Multi observation PET image fusion for patient follow-up quantitation and therapy response

    No full text
    International audienceIn positron emission tomography (PET) imaging, an early therapeutic response is usually characterized by variations of semi-quantitative parameters restricted to maximum SUV measured in PET scans during the treatment. Such measurements do not reflect overall tumor volume and radiotracer uptake variations. The proposed approach is based on multi-observation image analysis for merging several PET acquisitions to assess tumor metabolic volume and uptake variations. The fusion algorithm is based on iterative estimation using a stochastic expectation maximization (SEM) algorithm. The proposed method was applied to simulated and clinical follow-up PET images. We compared the multi-observation fusion performance to threshold-based methods, proposed for the assessment of the therapeutic response based on functional volumes. On simulated datasets the adaptive threshold applied independently on both images led to higher errors than the ASEM fusion and on clinical datasets it failed to provide coherent measurements for four patients out of seven due to aberrant delineations. The ASEM method demonstrated improved and more robust estimation of the evaluation leading to more pertinent measurements. Future work will consist in extending the methodology and applying it to clinical multi-tracer datasets in order to evaluate its potential impact on the biological tumor volume definition for radiotherapy applications

    Technical feasibility of [18F]FET and [18F]FAZA PET guided radiotherapy in a F98 glioblastoma rat model

    Get PDF
    Background: Glioblastoma (GB) is the most common primary malignant brain tumor. Standard medical treatment consists of a maximal safe surgical resection, subsequently radiation therapy (RT) and chemotherapy with temozolomide (TMZ). An accurate definition of the tumor volume is of utmost importance for guiding RT. In this project we investigated the feasibility and treatment response of subvolume boosting to a PET-defined tumor part. Method: F98 GB cells inoculated in the rat brain were imaged using T2- and contrast-enhanced T1-weighted (T1w) MRI. A dose of 20 Gy (5 x 5 mm(2)) was delivered to the target volume delineated based on T1w MRI for three treatment groups. Two of those treatment groups received an additional radiation boost of 5 Gy (1 x 1 mm(2)) delivered to the region either with maximum [F-18]FET or [F-18]FAZA PET tracer uptake, respectively. All therapy groups received intraperitoneal (IP) injections of TMZ. Finally, a control group received no RT and only control IP injections. The average, minimum and maximum dose, as well as the D-90-, D-50- and D-2- values were calculated for nine rats using both RT plans. To evaluate response to therapy, follow-up tumor volumes were delineated based on T1w MRI. Results: When comparing the dose volume histograms, a significant difference was found exclusively between the D-2-values. A significant difference in tumor growth was only found between active therapy and sham therapy respectively, while no significant differences were found when comparing the three treatment groups. Conclusion: In this study we showed the feasibility of PET guided subvolume boosting of F98 glioblastoma in rats. No evidence was found for a beneficial effect regarding tumor response. However, improvements for dose targeting in rodents and studies investigating new targeted drugs for GB treatment are mandatory

    Evaluation of intensity modulated radiation therapy dose painting for localized prostate cancer using 68 Ga-HBED-CC PSMA-PET/CT: A planning study based on histopathology reference

    Get PDF
    AbstractPurposeTo demonstrate the feasibility and to evaluate the tumour control probability (TCP) and normal tissue complication probability (NTCP) of IMRT dose painting using 68Ga-HBED-CC PSMA PET/CT for target delineation in prostate cancer (PCa).Methods and materials10 patients had PSMA PET/CT scans prior to prostatectomy. GTV-PET was generated on the basis of an intraprostatic SUVmax of 30%. Two IMRT plans were generated for each patient: Plan77 which consisted of whole-prostate IMRT to 77Gy, and Plan95 which consisted of whole-prostate IMRT to 77Gy and a simultaneous integrated boost to the GTV-PET up to 95Gy (35 fractions). The feasibility of these plans was judged by their ability to adhere to the FLAME trial protocol. TCP-histo/-PET were calculated on co-registered histology (GTV-histo) and GTV-PET, respectively. NTCPs for rectum and bladder were calculated.ResultsAll plans reached prescription doses whilst adhering to dose constraints. In Plan77 and Plan95 mean doses in GTV-histo were 75.8±0.3Gy and 96.9±1Gy, respectively. Average TCP-histo values for Plan77 and Plan95 were 70% (range: 15–97%), and 96% (range: 78–100%, p77 and Plan95 were 55% (range: 27–82%), and 100% (range: 99–100%, p95 (p=0.25). There were no significant differences in rectal (p=0.563) and bladder (p=0.3) NTCPs.ConclusionsIMRT dose painting using PSMA PET/CT was technically feasible and resulted in significantly higher TCPs without higher NTCPs

    Validation of 3\u27-deoxy-3\u27-[18F]-fluorothymidine positron emission tomography for image-guidance in biologically adaptive radiotherapy

    Get PDF
    Accelerated tumor cell repopulation during radiation therapy is one of the leading causes for low survival rates of head-and-neck cancer patients. The therapeutic effectiveness of radiotherapy could be improved by selectively targeting proliferating tumor subvolumes with higher doses of radiation. Positron emission tomography (PET) imaging with 3´-deoxy-3´-[18F]-fluorothymidine (FLT) has shown great potential as a non-invasive approach to characterizing the proliferation status of tumors. This thesis focuses on histopathological validation of FLT PET imaging specifically for image-guidance applications in biologically adaptive radiotherapy. The lack of experimental data supporting the use of FLT PET imaging for radiotherapy guidance is addressed by developing a novel methodology for histopathological validation of PET imaging. Using this new approach, the spatial concordance between the intratumoral pattern of FLT uptake and the spatial distribution of cell proliferation is demonstrated in animal tumors. First, a two-dimensional analysis is conducted comparing the microscopic FLT uptake as imaged with autoradiography and the distribution of active cell proliferation markers imaged with immunofluorescent microscopy. It was observed that when tumors present a pattern of cell proliferation that is highly dispersed throughout the tumor, even high-resolution imaging modalities such as autoradiography could not accurately determine the extent and spatial distribution of proliferative tumor subvolumes. While microscopic spatial coincidence between high FLT uptake regions and actively proliferative subvolumes was demonstrated in tumors with highly compartmentalized/aggregated features of cell proliferation, there were no conclusive results across the entire set of utilized tumor specimens. This emphasized the need for addressing the limited resolution of FLT PET when imaging microscopic patterns of cell proliferation. This issue was emphasized in the second part of the thesis where the spatial concordance between volumes segmented on FLT simulated FLT PET images and the three dimensional spatial distribution of cell proliferation markers was analyzed

    Imaging of Tumour Microenvironment for the Planning of Oncological Therapies Using Positron Emission Tomography

    Get PDF
    Tumour cells differ from normal tissue cells in several important ways. These differences, like for example changed energy metabolism, result in altered microenvironment of malignant tumours. Non-invasive imaging of tumour microenvironment has been at the centre of intense research recently due to the important role that this changed environement plays in the development of malignant tumours and due to the role it plays in the treatment of these tumours. In this respect, perhaps the most important characteristics of the tumour microenvironment from this point of view are the lack of oxygen or hypoxia and changes in blood flow (BF). The purpose of this thesis was to investigate the processes of energy metabolism, BF and oxygenation in head and neck cancer and pancreatic tumours and to explore the possibilities of improving the methods for their quantification using positron emission tomography (PET). To this end [18F]EF5, a new PET tracer for detection of tumour hypoxia was investigated. Favourable uptake properties of the tracer were observed. In addition, it was established that the uptake of this tracer does not correlate with the uptake of existing tracers for the imaging of energy metabolism and BF, so the information about the presence of tissue hypoxia cannot therefore be obtained using tracers such as [18F]FDG or [15O]H2O. These results were complemented by the results of the follow-up study in which it was shown that the uptake of [18F]EF5 in head and neck tumours prior to treatment is also associated with the overall survival of the patients, indicating that tumour hypoxia is a negative prognostic factor and might be associated with therapeutic resistance. The influences of energy metabolism and BF on the survival of patients with pancreatic cancer were investigated in the second study. The results indicate that the best predictor of survival of patients with pancreatic cancer is the relationship between energy metabolism and BF. These results suggest that the cells with high metabolic activity in a hypoperfused tissue have the most aggressive phenotype.Siirretty Doriast

    The future of hybrid imaging—part 2: PET/CT

    Get PDF
    Since the 1990s, hybrid imaging by means of software and hardware image fusion alike allows the intrinsic combination of functional and anatomical image information. This review summarises the state-of-the-art of dual-modality imaging with a focus on clinical applications. We highlight selected areas for potential improvement of combined imaging technologies and new applications. In the second part, we briefly review the background of dual-modality PET/CT imaging, discuss its main applications and attempt to predict technological and methodological improvements of combined PET/CT imaging. After a decade of clinical evaluation, PET/CT will continue to have a significant impact on patient management, mainly in the area of oncological diseases. By adopting more innovative acquisition schemes and data processing PET/CT will become a fast and dose-efficient imaging method and an integral part of state-of-the-art clinical patient management

    Personalized radiotherapy treatment planning based on functional imaging

    Get PDF
    In recent years, a huge progress in the field of radiotherapy could be observed. From treating patients with kilo-voltage X-rays units to cutting edge technology that can deliver a certain dose with an extreme precision. Modern radiotherapy is characterized, among others, by an individualized approach to the patient. This can be provided by functional imaging which is another step toward a better tumor control. In this paper, we discuss the potential application of functional imaging modalities in personalized radiotherapy planning with emphasis on dose painting. Some limitations of this approach will also be evaluated
    • …
    corecore