1,039 research outputs found

    Integration of Absolute Orientation Measurements in the KinectFusion Reconstruction pipeline

    Full text link
    In this paper, we show how absolute orientation measurements provided by low-cost but high-fidelity IMU sensors can be integrated into the KinectFusion pipeline. We show that integration improves both runtime, robustness and quality of the 3D reconstruction. In particular, we use this orientation data to seed and regularize the ICP registration technique. We also present a technique to filter the pairs of 3D matched points based on the distribution of their distances. This filter is implemented efficiently on the GPU. Estimating the distribution of the distances helps control the number of iterations necessary for the convergence of the ICP algorithm. Finally, we show experimental results that highlight improvements in robustness, a speed-up of almost 12%, and a gain in tracking quality of 53% for the ATE metric on the Freiburg benchmark.Comment: CVPR Workshop on Visual Odometry and Computer Vision Applications Based on Location Clues 201

    ReLoc-PDR: Visual Relocalization Enhanced Pedestrian Dead Reckoning via Graph Optimization

    Full text link
    Accurately and reliably positioning pedestrians in satellite-denied conditions remains a significant challenge. Pedestrian dead reckoning (PDR) is commonly employed to estimate pedestrian location using low-cost inertial sensor. However, PDR is susceptible to drift due to sensor noise, incorrect step detection, and inaccurate stride length estimation. This work proposes ReLoc-PDR, a fusion framework combining PDR and visual relocalization using graph optimization. ReLoc-PDR leverages time-correlated visual observations and learned descriptors to achieve robust positioning in visually-degraded environments. A graph optimization-based fusion mechanism with the Tukey kernel effectively corrects cumulative errors and mitigates the impact of abnormal visual observations. Real-world experiments demonstrate that our ReLoc-PDR surpasses representative methods in accuracy and robustness, achieving accurte and robust pedestrian positioning results using only a smartphone in challenging environments such as less-textured corridors and dark nighttime scenarios.Comment: 11 pages, 14 figure

    An inertial motion capture framework for constructing body sensor networks

    Get PDF
    Motion capture is the process of measuring and subsequently reconstructing the movement of an animated object or being in virtual space. Virtual reconstructions of human motion play an important role in numerous application areas such as animation, medical science, ergonomics, etc. While optical motion capture systems are the industry standard, inertial body sensor networks are becoming viable alternatives due to portability, practicality and cost. This thesis presents an innovative inertial motion capture framework for constructing body sensor networks through software environments, smartphones and web technologies. The first component of the framework is a unique inertial motion capture software environment aimed at providing an improved experimentation environment, accompanied by programming scaffolding and a driver development kit, for users interested in studying or engineering body sensor networks. The software environment provides a bespoke 3D engine for kinematic motion visualisations and a set of tools for hardware integration. The software environment is used to develop the hardware behind a prototype motion capture suit focused on low-power consumption and hardware-centricity. Additional inertial measurement units, which are available commercially, are also integrated to demonstrate the functionality the software environment while providing the framework with additional sources for motion data. The smartphone is the most ubiquitous computing technology and its worldwide uptake has prompted many advances in wearable inertial sensing technologies. Smartphones contain gyroscopes, accelerometers and magnetometers, a combination of sensors that is commonly found in inertial measurement units. This thesis presents a mobile application that investigates whether the smartphone is capable of inertial motion capture by constructing a novel omnidirectional body sensor network. This thesis proposes a novel use for web technologies through the development of the Motion Cloud, a repository and gateway for inertial data. Web technologies have the potential to replace motion capture file formats with online repositories and to set a new standard for how motion data is stored. From a single inertial measurement unit to a more complex body sensor network, the proposed architecture is extendable and facilitates the integration of any inertial hardware configuration. The Motion Cloud’s data can be accessed through an application-programming interface or through a web portal that provides users with the functionality for visualising and exporting the motion data

    Sensor Modalities and Fusion for Robust Indoor Localisation

    Get PDF

    SENSORS FOR LOCATION-BASED AUGMENTED REALITY THE EXAMPLE OF GALILEO AND EGNOS

    Get PDF
    • …
    corecore