83 research outputs found

    Face Detection & Recognition based on Fusion of Omnidirectional & PTZ Vision Sensors and Heteregenous Database

    Get PDF
    International audienceLarge field of view with high resolution has always been sought-after for Mobile Robotic Authentication. So the Vision System proposed here is composed of a catadioptric sensor for full range monitoring and a Pan Tilt Zoom (PTZ) camera together forming an innovative sensor, able to detect and track any moving objects at a higher zoom level. In our application, the catadioptric sensor is calibrated and used to detect and track Regions Of Iinterest (ROIs) within its 360 degree Field Of View (FOV), especially face regions. Using a joint calibration strategy, the PTZ camera parameters are automatically adjusted by the system in order to detect and track the face ROI within a higher resolution and project the same in faces-pace for recognition via Eigenface algorithm. Face recognition is one important task in Nomad Biometric Authentication (NOBA 1) project. However, as many other face databases, it will easily produce the Small Sample Size (SSS) problem in some applications with NOBA data. Thus this journal uses the compressed sensing (CS) algorithm to solve the SSS problem in NOBA face database. Some experiments can prove the feasibility and validity of this solution. The whole development has been partially validated by application to the Face recognition using our own database NOBA

    Long Range Automated Persistent Surveillance

    Get PDF
    This dissertation addresses long range automated persistent surveillance with focus on three topics: sensor planning, size preserving tracking, and high magnification imaging. field of view should be reserved so that camera handoff can be executed successfully before the object of interest becomes unidentifiable or untraceable. We design a sensor planning algorithm that not only maximizes coverage but also ensures uniform and sufficient overlapped camera’s field of view for an optimal handoff success rate. This algorithm works for environments with multiple dynamic targets using different types of cameras. Significantly improved handoff success rates are illustrated via experiments using floor plans of various scales. Size preserving tracking automatically adjusts the camera’s zoom for a consistent view of the object of interest. Target scale estimation is carried out based on the paraperspective projection model which compensates for the center offset and considers system latency and tracking errors. A computationally efficient foreground segmentation strategy, 3D affine shapes, is proposed. The 3D affine shapes feature direct and real-time implementation and improved flexibility in accommodating the target’s 3D motion, including off-plane rotations. The effectiveness of the scale estimation and foreground segmentation algorithms is validated via both offline and real-time tracking of pedestrians at various resolution levels. Face image quality assessment and enhancement compensate for the performance degradations in face recognition rates caused by high system magnifications and long observation distances. A class of adaptive sharpness measures is proposed to evaluate and predict this degradation. A wavelet based enhancement algorithm with automated frame selection is developed and proves efficient by a considerably elevated face recognition rate for severely blurred long range face images

    Control of a PTZ camera in a hybrid vision system

    No full text
    In this paper, we propose a new approach to steer a PTZ camera in the direction of a detected object visible from another fixed camera equipped with a fisheye lens. This heterogeneous association of two cameras having different characteristics is called a hybrid stereo-vision system. The presented method employs epipolar geometry in a smart way in order to reduce the range of search of the desired region of interest. Furthermore, we proposed a target recognition method designed to cope with the illumination problems, the distortion of the omnidirectional image and the inherent dissimilarity of resolution and color responses between both cameras. Experimental results with synthetic and real images show the robustness of the proposed method

    Cognitive visual tracking and camera control

    Get PDF
    Cognitive visual tracking is the process of observing and understanding the behaviour of a moving person. This paper presents an efficient solution to extract, in real-time, high-level information from an observed scene, and generate the most appropriate commands for a set of pan-tilt-zoom (PTZ) cameras in a surveillance scenario. Such a high-level feedback control loop, which is the main novelty of our work, will serve to reduce uncertainties in the observed scene and to maximize the amount of information extracted from it. It is implemented with a distributed camera system using SQL tables as virtual communication channels, and Situation Graph Trees for knowledge representation, inference and high-level camera control. A set of experiments in a surveillance scenario show the effectiveness of our approach and its potential for real applications of cognitive vision

    Dynamic Reconfiguration in Camera Networks: A Short Survey

    Get PDF
    There is a clear trend in camera networks towards enhanced functionality and flexibility, and a fixed static deployment is typically not sufficient to fulfill these increased requirements. Dynamic network reconfiguration helps to optimize the network performance to the currently required specific tasks while considering the available resources. Although several reconfiguration methods have been recently proposed, e.g., for maximizing the global scene coverage or maximizing the image quality of specific targets, there is a lack of a general framework highlighting the key components shared by all these systems. In this paper we propose a reference framework for network reconfiguration and present a short survey of some of the most relevant state-of-the-art works in this field, showing how they can be reformulated in our framework. Finally we discuss the main open research challenges in camera network reconfiguration

    A dataset of annotated omnidirectional videos for distancing applications

    Get PDF
    Omnidirectional (or 360◦ ) cameras are acquisition devices that, in the next few years, could have a big impact on video surveillance applications, research, and industry, as they can record a spherical view of a whole environment from every perspective. This paper presents two new contributions to the research community: the CVIP360 dataset, an annotated dataset of 360◦ videos for distancing applications, and a new method to estimate the distances of objects in a scene from a single 360◦ image. The CVIP360 dataset includes 16 videos acquired outdoors and indoors, annotated by adding information about the pedestrians in the scene (bounding boxes) and the distances to the camera of some points in the 3D world by using markers at fixed and known intervals. The proposed distance estimation algorithm is based on geometry facts regarding the acquisition process of the omnidirectional device, and is uncalibrated in practice: the only required parameter is the camera height. The proposed algorithm was tested on the CVIP360 dataset, and empirical results demonstrate that the estimation error is negligible for distancing applications

    A vision system for mobile maritime surveillance platforms

    Get PDF
    Mobile surveillance systems play an important role to minimise security and safety threats in high-risk or hazardous environments. Providing a mobile marine surveillance platform with situational awareness of its environment is important for mission success. An essential part of situational awareness is the ability to detect and subsequently track potential target objects.Typically, the exact type of target objects is unknown, hence detection is addressed as a problem of finding parts of an image that stand out in relation to their surrounding regions or are atypical to the domain. Contrary to existing saliency methods, this thesis proposes the use of a domain specific visual attention approach for detecting potential regions of interest in maritime imagery. For this, low-level features that are indicative of maritime targets are identified. These features are then evaluated with respect to their local, regional, and global significance. Together with a domain specific background segmentation technique, the features are combined in a Bayesian classifier to direct visual attention to potential target objects.The maritime environment introduces challenges to the camera system: gusts, wind, swell, or waves can cause the platform to move drastically and unpredictably. Pan-tilt-zoom cameras that are often utilised for surveillance tasks can adjusting their orientation to provide a stable view onto the target. However, in rough maritime environments this requires high-speed and precise inputs. In contrast, omnidirectional cameras provide a full spherical view, which allows the acquisition and tracking of multiple targets at the same time. However, the target itself only occupies a small fraction of the overall view. This thesis proposes a novel, target-centric approach for image stabilisation. A virtual camera is extracted from the omnidirectional view for each target and is adjusted based on the measurements of an inertial measurement unit and an image feature tracker. The combination of these two techniques in a probabilistic framework allows for stabilisation of rotational and translational ego-motion. Furthermore, it has the specific advantage of being robust to loosely calibrated and synchronised hardware since the fusion of tracking and stabilisation means that tracking uncertainty can be used to compensate for errors in calibration and synchronisation. This then completely eliminates the need for tedious calibration phases and the adverse effects of assembly slippage over time.Finally, this thesis combines the visual attention and omnidirectional stabilisation frameworks and proposes a multi view tracking system that is capable of detecting potential target objects in the maritime domain. Although the visual attention framework performed well on the benchmark datasets, the evaluation on real-world maritime imagery produced a high number of false positives. An investigation reveals that the problem is that benchmark data sets are unconsciously being influenced by human shot selection, which greatly simplifies the problem of visual attention. Despite the number of false positives, the tracking approach itself is robust even if a high number of false positives are tracked
    corecore