9,148 research outputs found

    Fusion of Multimodal Information in Music Content Analysis

    Get PDF
    Music is often processed through its acoustic realization. This is restrictive in the sense that music is clearly a highly multimodal concept where various types of heterogeneous information can be associated to a given piece of music (a musical score, musicians\u27 gestures, lyrics, user-generated metadata, etc.). This has recently led researchers to apprehend music through its various facets, giving rise to "multimodal music analysis" studies. This article gives a synthetic overview of methods that have been successfully employed in multimodal signal analysis. In particular, their use in music content processing is discussed in more details through five case studies that highlight different multimodal integration techniques. The case studies include an example of cross-modal correlation for music video analysis, an audiovisual drum transcription system, a description of the concept of informed source separation, a discussion of multimodal dance-scene analysis, and an example of user-interactive music analysis. In the light of these case studies, some perspectives of multimodality in music processing are finally suggested

    Multimodal music information processing and retrieval: survey and future challenges

    Full text link
    Towards improving the performance in various music information processing tasks, recent studies exploit different modalities able to capture diverse aspects of music. Such modalities include audio recordings, symbolic music scores, mid-level representations, motion, and gestural data, video recordings, editorial or cultural tags, lyrics and album cover arts. This paper critically reviews the various approaches adopted in Music Information Processing and Retrieval and highlights how multimodal algorithms can help Music Computing applications. First, we categorize the related literature based on the application they address. Subsequently, we analyze existing information fusion approaches, and we conclude with the set of challenges that Music Information Retrieval and Sound and Music Computing research communities should focus in the next years

    Multimodal Classification of Urban Micro-Events

    Get PDF
    In this paper we seek methods to effectively detect urban micro-events. Urban micro-events are events which occur in cities, have limited geographical coverage and typically affect only a small group of citizens. Because of their scale these are difficult to identify in most data sources. However, by using citizen sensing to gather data, detecting them becomes feasible. The data gathered by citizen sensing is often multimodal and, as a consequence, the information required to detect urban micro-events is distributed over multiple modalities. This makes it essential to have a classifier capable of combining them. In this paper we explore several methods of creating such a classifier, including early, late, hybrid fusion and representation learning using multimodal graphs. We evaluate performance on a real world dataset obtained from a live citizen reporting system. We show that a multimodal approach yields higher performance than unimodal alternatives. Furthermore, we demonstrate that our hybrid combination of early and late fusion with multimodal embeddings performs best in classification of urban micro-events

    Multimodal Content Analysis for Effective Advertisements on YouTube

    Full text link
    The rapid advances in e-commerce and Web 2.0 technologies have greatly increased the impact of commercial advertisements on the general public. As a key enabling technology, a multitude of recommender systems exists which analyzes user features and browsing patterns to recommend appealing advertisements to users. In this work, we seek to study the characteristics or attributes that characterize an effective advertisement and recommend a useful set of features to aid the designing and production processes of commercial advertisements. We analyze the temporal patterns from multimedia content of advertisement videos including auditory, visual and textual components, and study their individual roles and synergies in the success of an advertisement. The objective of this work is then to measure the effectiveness of an advertisement, and to recommend a useful set of features to advertisement designers to make it more successful and approachable to users. Our proposed framework employs the signal processing technique of cross modality feature learning where data streams from different components are employed to train separate neural network models and are then fused together to learn a shared representation. Subsequently, a neural network model trained on this joint feature embedding representation is utilized as a classifier to predict advertisement effectiveness. We validate our approach using subjective ratings from a dedicated user study, the sentiment strength of online viewer comments, and a viewer opinion metric of the ratio of the Likes and Views received by each advertisement from an online platform.Comment: 11 pages, 5 figures, ICDM 201

    Generating Video Descriptions with Topic Guidance

    Full text link
    Generating video descriptions in natural language (a.k.a. video captioning) is a more challenging task than image captioning as the videos are intrinsically more complicated than images in two aspects. First, videos cover a broader range of topics, such as news, music, sports and so on. Second, multiple topics could coexist in the same video. In this paper, we propose a novel caption model, topic-guided model (TGM), to generate topic-oriented descriptions for videos in the wild via exploiting topic information. In addition to predefined topics, i.e., category tags crawled from the web, we also mine topics in a data-driven way based on training captions by an unsupervised topic mining model. We show that data-driven topics reflect a better topic schema than the predefined topics. As for testing video topic prediction, we treat the topic mining model as teacher to train the student, the topic prediction model, by utilizing the full multi-modalities in the video especially the speech modality. We propose a series of caption models to exploit topic guidance, including implicitly using the topics as input features to generate words related to the topic and explicitly modifying the weights in the decoder with topics to function as an ensemble of topic-aware language decoders. Our comprehensive experimental results on the current largest video caption dataset MSR-VTT prove the effectiveness of our topic-guided model, which significantly surpasses the winning performance in the 2016 MSR video to language challenge.Comment: Appeared at ICMR 201

    Evaluating Content-centric vs User-centric Ad Affect Recognition

    Get PDF
    Despite the fact that advertisements (ads) often include strongly emotional content, very little work has been devoted to affect recognition (AR) from ads. This work explicitly compares content-centric and user-centric ad AR methodologies, and evaluates the impact of enhanced AR on computational advertising via a user study. Specifically, we (1) compile an affective ad dataset capable of evoking coherent emotions across users; (2) explore the efficacy of content-centric convolutional neural network (CNN) features for encoding emotions, and show that CNN features outperform low-level emotion descriptors; (3) examine user-centered ad AR by analyzing Electroencephalogram (EEG) responses acquired from eleven viewers, and find that EEG signals encode emotional information better than content descriptors; (4) investigate the relationship between objective AR and subjective viewer experience while watching an ad-embedded online video stream based on a study involving 12 users. To our knowledge, this is the first work to (a) expressly compare user vs content-centered AR for ads, and (b) study the relationship between modeling of ad emotions and its impact on a real-life advertising application.Comment: Accepted at the ACM International Conference on Multimodal Interation (ICMI) 201
    • …
    corecore