4,473 research outputs found

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Face recognition using color local binary pattern from mutually independent color channels

    Get PDF
    In this paper, a high performance face recognition system based on local binary pattern (LBP) using the probability distribution functions (PDF) of pixels in different mutually independent color channels which are robust to frontal homogenous illumination and planer rotation is proposed. The illumination of faces is enhanced by using the state-of-the-art technique which is using discrete wavelet transform (DWT) and singular value decomposition (SVD). After equalization, face images are segmented by use of local Successive Mean Quantization Transform (SMQT) followed by skin color based face detection system. Kullback-Leibler Distance (KLD) between the concatenated PDFs of a given face obtained by LBP and the concatenated PDFs of each face in the database is used as a metric in the recognition process. Various decision fusion techniques have been used in order to improve the recognition rate. The proposed system has been tested on the FERET, HP, and Bosphorus face databases. The proposed system is compared with conventional and thestate-of-the-art techniques. The recognition rates obtained using FVF approach for FERET database is 99.78% compared with 79.60% and 68.80% for conventional gray scale LBP and Principle Component Analysis (PCA) based face recognition techniques respectively.Comment: 11 pages in EURASIP Journal on Image and Video Processing, 201

    Multi-Scale 3D Scene Flow from Binocular Stereo Sequences

    Full text link
    Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation. This paper describes an alternative formulation for dense scene flow estimation that provides reliable results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. Internally, the proposed algorithm generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than previous methods allow. To handle the aperture problems inherent in the estimation of optical flow and disparity, a multi-scale method along with a novel region-based technique is used within a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization – two problems commonly associated with the basic multi-scale approaches. Experiments with synthetic and real test data demonstrate the strength of the proposed approach.National Science Foundation (CNS-0202067, IIS-0208876); Office of Naval Research (N00014-03-1-0108

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Video surveillance systems-current status and future trends

    Get PDF
    Within this survey an attempt is made to document the present status of video surveillance systems. The main components of a surveillance system are presented and studied thoroughly. Algorithms for image enhancement, object detection, object tracking, object recognition and item re-identification are presented. The most common modalities utilized by surveillance systems are discussed, putting emphasis on video, in terms of available resolutions and new imaging approaches, like High Dynamic Range video. The most important features and analytics are presented, along with the most common approaches for image / video quality enhancement. Distributed computational infrastructures are discussed (Cloud, Fog and Edge Computing), describing the advantages and disadvantages of each approach. The most important deep learning algorithms are presented, along with the smart analytics that they utilize. Augmented reality and the role it can play to a surveillance system is reported, just before discussing the challenges and the future trends of surveillance

    Camera Planning and Fusion in a Heterogeneous Camera Network

    Get PDF
    Wide-area camera networks are becoming more and more common. They have widerange of commercial and military applications from video surveillance to smart home and from traffic monitoring to anti-terrorism. The design of such a camera network is a challenging problem due to the complexity of the environment, self and mutual occlusion of moving objects, diverse sensor properties and a myriad of performance metrics for different applications. In this dissertation, we consider two such challenges: camera planing and camera fusion. Camera planning is to determine the optimal number and placement of cameras for a target cost function. Camera fusion describes the task of combining images collected by heterogenous cameras in the network to extract information pertinent to a target application. I tackle the camera planning problem by developing a new unified framework based on binary integer programming (BIP) to relate the network design parameters and the performance goals of a variety of camera network tasks. Most of the BIP formulations are NP hard problems and various approximate algorithms have been proposed in the literature. In this dissertation, I develop a comprehensive framework in comparing the entire spectrum of approximation algorithms from Greedy, Markov Chain Monte Carlo (MCMC) to various relaxation techniques. The key contribution is to provide not only a generic formulation of the camera planning problem but also novel approaches to adapt the formulation to powerful approximation schemes including Simulated Annealing (SA) and Semi-Definite Program (SDP). The accuracy, efficiency and scalability of each technique are analyzed and compared in depth. Extensive experimental results are provided to illustrate the strength and weakness of each method. The second problem of heterogeneous camera fusion is a very complex problem. Information can be fused at different levels from pixel or voxel to semantic objects, with large variation in accuracy, communication and computation costs. My focus is on the geometric transformation of shapes between objects observed at different camera planes. This so-called the geometric fusion approach usually provides the most reliable fusion approach at the expense of high computation and communication costs. To tackle the complexity, a hierarchy of camera models with different levels of complexity was proposed to balance the effectiveness and efficiency of the camera network operation. Then different calibration and registration methods are proposed for each camera model. At last, I provide two specific examples to demonstrate the effectiveness of the model: 1)a fusion system to improve the segmentation of human body in a camera network consisted of thermal and regular visible light cameras and 2) a view dependent rendering system by combining the information from depth and regular cameras to collecting the scene information and generating new views in real time
    corecore