482 research outputs found

    Improved Activity Recognition Combining Inertial Motion Sensors and Electroencephalogram Signals

    Get PDF
    Human activity recognition and neural activity analysis are the basis for human computational neureoethology research dealing with the simultaneous analysis of behavioral ethogram descriptions and neural activity measurements. Wireless electroencephalography (EEG) and wireless inertial measurement units (IMU) allow the realization of experimental data recording with improved ecological validity where the subjects can be carrying out natural activities while data recording is minimally invasive. Specifically, we aim to show that EEG and IMU data fusion allows improved human activity recognition in a natural setting. We have defined an experimental protocol composed of natural sitting, standing and walking activities, and we have recruited subjects in two sites: in-house (N = 4) and out-house (N = 12) populations with different demographics. Experimental protocol data capture was carried out with validated commercial systems. Classifier model training and validation were carried out with scikit-learn open source machine learning python package. EEG features consist of the amplitude of the standard EEG frequency bands. Inertial features were the instantaneous position of the body tracked points after a moving average smoothing to remove noise. We carry out three validation processes: a 10-fold cross-validation process per experimental protocol repetition, (b) the inference of the ethograms, and (c) the transfer learning from each experimental protocol repetition to the remaining repetitions. The in-house accuracy results were lower and much more variable than the out-house sessions results. In general, random forest was the best performing classifier model. Best cross-validation results, ethogram accuracy, and transfer learning were achieved from the fusion of EEG and IMUs data. Transfer learning behaved poorly compared to classification on the same protocol repetition, but it has accuracy still greater than 0.75 on average for the out-house data sessions. Transfer leaning accuracy among repetitions of the same subject was above 0.88 on average. Ethogram prediction accuracy was above 0.96 on average. Therefore, we conclude that wireless EEG and IMUs allow for the definition of natural experimental designs with high ecological validity toward human computational neuroethology research. The fusion of both EEG and IMUs signals improves activity and ethogram recognitionThis work has been partially supported by FEDER funds through MINECO Project TIN2017-85827-P. Special thanks to Naiara Vidal from IMH who conducted the recruitment process in the framework of Langileok project funded by the Elkartek program. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 777720

    Design of a wearable sensor system for neonatal seizure monitoring

    Get PDF

    Design of a wearable sensor system for neonatal seizure monitoring

    Get PDF

    A Survey on Multi-Resident Activity Recognition in Smart Environments

    Full text link
    Human activity recognition (HAR) is a rapidly growing field that utilizes smart devices, sensors, and algorithms to automatically classify and identify the actions of individuals within a given environment. These systems have a wide range of applications, including assisting with caring tasks, increasing security, and improving energy efficiency. However, there are several challenges that must be addressed in order to effectively utilize HAR systems in multi-resident environments. One of the key challenges is accurately associating sensor observations with the identities of the individuals involved, which can be particularly difficult when residents are engaging in complex and collaborative activities. This paper provides a brief overview of the design and implementation of HAR systems, including a summary of the various data collection devices and approaches used for human activity identification. It also reviews previous research on the use of these systems in multi-resident environments and offers conclusions on the current state of the art in the field.Comment: 16 pages, to appear in Evolution of Information, Communication and Computing Systems (EICCS) Book Serie

    A Review of Physical Human Activity Recognition Chain Using Sensors

    Get PDF
    In the era of Internet of Medical Things (IoMT), healthcare monitoring has gained a vital role nowadays. Moreover, improving lifestyle, encouraging healthy behaviours, and decreasing the chronic diseases are urgently required. However, tracking and monitoring critical cases/conditions of elderly and patients is a great challenge. Healthcare services for those people are crucial in order to achieve high safety consideration. Physical human activity recognition using wearable devices is used to monitor and recognize human activities for elderly and patient. The main aim of this review study is to highlight the human activity recognition chain, which includes, sensing technologies, preprocessing and segmentation, feature extractions methods, and classification techniques. Challenges and future trends are also highlighted.

    Application of data fusion techniques and technologies for wearable health monitoring

    Get PDF
    Technological advances in sensors and communications have enabled discrete integration into everyday objects, both in the home and about the person. Information gathered by monitoring physiological, behavioural, and social aspects of our lives, can be used to achieve a positive impact on quality of life, health, and well-being. Wearable sensors are at the cusp of becoming truly pervasive, and could be woven into the clothes and accessories that we wear such that they become ubiquitous and transparent. To interpret the complex multidimensional information provided by these sensors, data fusion techniques are employed to provide a meaningful representation of the sensor outputs. This paper is intended to provide a short overview of data fusion techniques and algorithms that can be used to interpret wearable sensor data in the context of health monitoring applications. The application of these techniques are then described in the context of healthcare including activity and ambulatory monitoring, gait analysis, fall detection, and biometric monitoring. A snap-shot of current commercially available sensors is also provided, focusing on their sensing capability, and a commentary on the gaps that need to be bridged to bring research to market

    Measuring operator’s pain : toward evaluating Musculoskeletal disorder at work

    Get PDF
    Musculoskeletal disorders (MSDs) have affected an increasing number of people in the active general population. In this perspective, we developed a measuring tool taking muscle activities in certain regions of the body, standing posture taking the center of pressure under the feet and feet positions. This tool also comprises an instrumented helmet containing an electroencephalogram (EEG) to measure brain activity, and an accelerometer reporting the movements of the head. Then, our tool comprises both non-invasive instrumented insole and safety helmet. Moreover, the same tool measures muscular activities in specific regions of the body using an electromyogram (EMG). The aim is to combine all the data in order to identify consistent patterns between brain activity, postures, movements and muscle activity, and then, understand their connection to the development of MSDs. This paper presents three situations reported to be a risk for MSDs and an analysis of the signals is presented in order to differentiate adequate or abnormal posture

    Neurological Tremor: Sensors, Signal Processing and Emerging Applications

    Get PDF
    Neurological tremor is the most common movement disorder, affecting more than 4% of elderly people. Tremor is a non linear and non stationary phenomenon, which is increasingly recognized. The issue of selection of sensors is central in the characterization of tremor. This paper reviews the state-of-the-art instrumentation and methods of signal processing for tremor occurring in humans. We describe the advantages and disadvantages of the most commonly used sensors, as well as the emerging wearable sensors being developed to assess tremor instantaneously. We discuss the current limitations and the future applications such as the integration of tremor sensors in BCIs (brain-computer interfaces) and the need for sensor fusion approaches for wearable solutions

    A survey on bio-signal analysis for human-robot interaction

    Get PDF
    The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of each domain's benefits and drawbacks, and finally, a recommendation for a new strategy for robotic systems
    • …
    corecore