14 research outputs found

    Particle Swarm Optimization-Based Multispectral Image Fusion for Minimizing Spectral Loss

    Get PDF
    A novel multispectral image fusion technique is proposed which minimizes the spectral loss of fused product using a proper objective function. It is found that the Relative Average Square Error (RASE) is a good choice to be considered as the objective function. A linear combination of multispectral bands is calculated in which the weights are optimized using particle swarm optimization algorithm. Several experimental studies have been conducted on three public domain datasets to show the effectiveness of the proposed approach in comparison with state-of-the-art methods. The objective and visual assessments of the proposed method support the claims provided in this paper

    Particle Swarm Optimization-Based Multispectral Image Fusion for Minimizing Spectral Loss

    Get PDF
    A novel multispectral image fusion technique is proposed which minimizes the spectral loss of fused product using a proper objective function. It is found that the Relative Average Square Error (RASE) is a good choice to be considered as the objective function. A linear combination of multispectral bands is calculated in which the weights are optimized using particle swarm optimization algorithm. Several experimental studies have been conducted on three public domain datasets to show the effectiveness of the proposed approach in comparison with state-of-the-art methods. The objective and visual assessments of the proposed method support the claims provided in this paper

    Remote sensing satellite image processing techniques for image classification: a comprehensive survey

    Get PDF
    This paper is a brief survey of advance technological aspects of Digital Image Processing which are applied to remote sensing images obtained from various satellite sensors. In remote sensing, the image processing techniques can be categories in to four main processing stages: Image preprocessing, Enhancement, Transformation and Classification. Image pre-processing is the initial processing which deals with correcting radiometric distortions, atmospheric distortion and geometric distortions present in the raw image data. Enhancement techniques are applied to preprocessed data in order to effectively display the image for visual interpretation. It includes techniques to effectively distinguish surface features for visual interpretation. Transformation aims to identify particular feature of earth’s surface and classification is a process of grouping the pixels, that produces effective thematic map of particular land use and land cover

    A review of spatial enhancement of hyperspectral remote sensing imaging techniques

    Get PDF
    Remote sensing technology has undeniable importance in various industrial applications, such as mineral exploration, plant detection, defect detection in aerospace and shipbuilding, and optical gas imaging, to name a few. Remote sensing technology has been continuously evolving, offering a range of image modalities that can facilitate the aforementioned applications. One such modality is Hyperspectral Imaging (HSI). Unlike Multispectral Images (MSI) and natural images, HSI consist of hundreds of bands. Despite their high spectral resolution, HSI suffer from low spatial resolution in comparison to their MSI counterpart, which hinders the utilization of their full potential. Therefore, spatial enhancement, or Super Resolution (SR), of HSI is a classical problem that has been gaining rapid attention over the past two decades. The literature is rich with various SR algorithms that enhance the spatial resolution of HSI while preserving their spectral fidelity. This paper reviews and discusses the most important algorithms relevant to this area of research between 2002-2022, along with the most frequently used datasets, HSI sensors, and quality metrics. Meta-analysis are drawn based on the aforementioned information, which is used as a foundation that summarizes the state of the field in a way that bridges the past and the present, identifies the current gap in it, and recommends possible future directions

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Robust density modelling using the student's t-distribution for human action recognition

    Full text link
    The extraction of human features from videos is often inaccurate and prone to outliers. Such outliers can severely affect density modelling when the Gaussian distribution is used as the model since it is highly sensitive to outliers. The Gaussian distribution is also often used as base component of graphical models for recognising human actions in the videos (hidden Markov model and others) and the presence of outliers can significantly affect the recognition accuracy. In contrast, the Student's t-distribution is more robust to outliers and can be exploited to improve the recognition rate in the presence of abnormal data. In this paper, we present an HMM which uses mixtures of t-distributions as observation probabilities and show how experiments over two well-known datasets (Weizmann, MuHAVi) reported a remarkable improvement in classification accuracy. © 2011 IEEE
    corecore