1,040 research outputs found

    Vegetation Dynamics in Ecuador

    Get PDF
    Global forest cover has suffered a dramatic reduction during recent decades, especially in tropical regions, which is mainly due to human activities caused by enhanced population pressures. Nevertheless, forest ecosystems, especially tropical forests, play an important role in the carbon cycle functioning as carbon stocks and sinks, which is why conservation strategies are of utmost importance respective to ongoing global warming. In South America the highest deforestation rates are observed in Ecuador, but an operational surveillance system for continuous forest monitoring, along with the determination of deforestation rates and the estimation of actual carbon socks is still missing. Therefore, the present investigation provides a functional tool based on remote sensing data to monitor forest stands at local, regional and national scales. To evaluate forest cover and deforestation rates at country level satellite data was used, whereas LiDAR data was utilized to accurately estimate the Above Ground Biomass (AGB; carbon stocks) at catchment level. Furthermore, to provide a cost-effective tool for continuous forest monitoring of the most vulnerable parts, an Unmanned Aerial Vehicle (UAV) was deployed and equipped with various sensors (RBG and multispectral camera). The results showed that in Ecuador total forest cover was reduced by about 24% during the last three decades. Moreover, deforestation rates have increased with the beginning of the new century, especially in the Andean Highland and the Amazon Basin, due to enhanced population pressures and the government supported oil and mining industries, besides illegal timber extractions. The AGB stock estimations at catchment level indicated that most of the carbon is stored in natural ecosystems (forest and páramo; AGB ~98%), whereas areas affected by anthropogenic land use changes (mostly pastureland) lost nearly all their storage capacities (AGB ~2%). Furthermore, the LiDAR data permitted the detection of the forest structure, and therefore the identification of the most vulnerable parts. To monitor these areas, it could be shown that UAVs are useful, particularly when equipped with an RGB camera (AGB correlation: R² > 0.9), because multispectral images suffer saturation of the spectral bands over dense natural forest stands, which results in high overestimations. In summary, the developed operational surveillance systems respective to forest cover at different spatial scales can be implemented in Ecuador to promote conservation/ restoration strategies and to reduce the high deforestation rates. This may also mitigate future greenhouse gas emissions and guarantee functional ecosystem services for local and regional populations

    Investigation of Coastal Vegetation Dynamics and Persistence in Response to Hydrologic and Climatic Events Using Remote Sensing

    Get PDF
    Coastal Wetlands (CW) provide numerous imperative functions and provide an economic base for human societies. Therefore, it is imperative to track and quantify both short and long-term changes in these systems. In this dissertation, CW dynamics related to hydro-meteorological signals were investigated using a series of LANDSAT-derived normalized difference vegetation index (NDVI) data and hydro-meteorological time-series data in Apalachicola Bay, Florida, from 1984 to 2015. NDVI in forested wetlands exhibited more persistence compared to that for scrub and emergent wetlands. NDVI fluctuations generally lagged temperature by approximately three months, and water level by approximately two months. This analysis provided insight into long-term CW dynamics in the Northern Gulf of Mexico. Long-term studies like this are dependent on optical remote sensing data such as Landsat which is frequently partially obscured due to clouds and this can that makes the time-series sparse and unusable during meteorologically active seasons. Therefore, a multi-sensor, virtual constellation method is proposed and demonstrated to recover the information lost due to cloud cover. This method, named Tri-Sensor Fusion (TSF), produces a simulated constellation for NDVI by integrating data from three compatible satellite sensors. The visible and near-infrared (VNIR) bands of Landsat-8 (L8), Sentinel-2, and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were utilized to map NDVI and to compensate each satellite sensor\u27s shortcomings in visible coverage area. The quantitative comparison results showed a Root Mean Squared Error (RMSE) and Coefficient of Determination (R2) of 0.0020 sr-1 and 0.88, respectively between true observed and fused L8 NDVI. Statistical test results and qualitative performance evaluation suggest that TSF was able to synthesize the missing pixels accurately in terms of the absolute magnitude of NDVI. The fusion improved the spatial coverage of CWs reasonably well and ultimately increases the continuity of NDVI data for long term studies

    Unmanned Aerial Vehicles (UAVs) in environmental biology: A Review

    Get PDF
    Acquiring information about the environment is a key step during each study in the field of environmental biology at different levels, from an individual species to community and biome. However, obtaining information about the environment is frequently difficult because of, for example, the phenological timing, spatial distribution of a species or limited accessibility of a particular area for the field survey. Moreover, remote sensing technology, which enables the observation of the Earth’s surface and is currently very common in environmental research, has many limitations such as insufficient spatial, spectral and temporal resolution and a high cost of data acquisition. Since the 1990s, researchers have been exploring the potential of different types of unmanned aerial vehicles (UAVs) for monitoring Earth’s surface. The present study reviews recent scientific literature dealing with the use of UAV in environmental biology. Amongst numerous papers, short communications and conference abstracts, we selected 110 original studies of how UAVs can be used in environmental biology and which organisms can be studied in this manner. Most of these studies concerned the use of UAV to measure the vegetation parameters such as crown height, volume, number of individuals (14 studies) and quantification of the spatio-temporal dynamics of vegetation changes (12 studies). UAVs were also frequently applied to count birds and mammals, especially those living in the water. Generally, the analytical part of the present study was divided into following sections: (1) detecting, assessing and predicting threats on vegetation, (2) measuring the biophysical parameters of vegetation, (3) quantifying the dynamics of changes in plants and habitats and (4) population and behaviour studies of animals. At the end, we also synthesised all the information showing, amongst others, the advances in environmental biology because of UAV application. Considering that 33% of studies found and included in this review were published in 2017 and 2018, it is expected that the number and variety of applications of UAVs in environmental biology will increase in the future

    Seabed mapping in coastal shallow waters using high resolution multispectral and hyperspectral imagery

    Get PDF
    Coastal ecosystems experience multiple anthropogenic and climate change pressures. To monitor the variability of the benthic habitats in shallow waters, the implementation of effective strategies is required to support coastal planning. In this context, high-resolution remote sensing data can be of fundamental importance to generate precise seabed maps in coastal shallow water areas. In this work, satellite and airborne multispectral and hyperspectral imagery were used to map benthic habitats in a complex ecosystem. In it, submerged green aquatic vegetation meadows have low density, are located at depths up to 20 m, and the sea surface is regularly affected by persistent local winds. A robust mapping methodology has been identified after a comprehensive analysis of different corrections, feature extraction, and classification approaches. In particular, atmospheric, sunglint, and water column corrections were tested. In addition, to increase the mapping accuracy, we assessed the use of derived information from rotation transforms, texture parameters, and abundance maps produced by linear unmixing algorithms. Finally, maximum likelihood (ML), spectral angle mapper (SAM), and support vector machine (SVM) classification algorithms were considered at the pixel and object levels. In summary, a complete processing methodology was implemented, and results demonstrate the better performance of SVM but the higher robustness of ML to the nature of information and the number of bands considered. Hyperspectral data increases the overall accuracy with respect to the multispectral bands (4.7% for ML and 9.5% for SVM) but the inclusion of additional features, in general, did not significantly improve the seabed map quality.Peer ReviewedPostprint (published version

    Exploring open-source multispectral satellite remote sensing as a tool to map long-term evolution of salt marsh shorelines

    Get PDF
    From an ecological and socio-economic perspective, salt marshes are one of the most valuable natural assets on Earth. As external pressures are causing their extensive degradation and loss globally, the ability to monitor salt marshes on a long-term scale and identify drivers of change is essential for their conservation. Remote sensing has been demonstrated to be one of the most adept methods for this purpose and open-source multispectral satellite remote sensing missions have the potential to provide worldwide long-term time-series coverage that is non-cost-prohibitive. This study derives the long-term lateral evolution of four salt marsh patches in the Ria Formosa coastal lagoon (Portugal) using data from the Sentinel-2 and Landsat missions as well as from aerial photography surveys to quantitatively examine the accuracy and associated uncertainty in using open-source multispectral satellite remote sensing for this purpose. The results show that these open-source satellite archives can be a useful tool for tracking long-term salt marsh extent dynamics. During 1976-2020, there was a net loss of salt marsh in the study area, with erosion rates reaching an average of-3.3 m/yr opposite a tidal inlet. The main source of error in the satellite results was the dataset spatial resolution limits, but the specific salt marsh shoreline environment contributed to the relative magnitude of that error. The study notes the influence of eco-geomorphological dynamics on the mapping of sedimentary environments, so far not extensively discussed in scientific literature, highlighting the difference between mapping a morphological process and a sedimentary environment.info:eu-repo/semantics/publishedVersio

    Characterising the ocean frontier : a review of marine geomorphometry

    Get PDF
    Geomorphometry, the science that quantitatively describes terrains, has traditionally focused on the investigation of terrestrial landscapes. However, the dramatic increase in the availability of digital bathymetric data and the increasing ease by which geomorphometry can be investigated using Geographic Information Systems (GIS) has prompted interest in employing geomorphometric techniques to investigate the marine environment. Over the last decade, a suite of geomorphometric techniques have been applied (e.g. terrain attributes, feature extraction, automated classification) to investigate the characterisation of seabed terrain from the coastal zone to the deep sea. Geomorphometric techniques are, however, not as varied, nor as extensively applied, in marine as they are in terrestrial environments. This is at least partly due to difficulties associated with capturing, classifying, and validating terrain characteristics underwater. There is nevertheless much common ground between terrestrial and marine geomorphology applications and it is important that, in developing the science and application of marine geomorphometry, we build on the lessons learned from terrestrial studies. We note, however, that not all terrestrial solutions can be adopted by marine geomorphometric studies since the dynamic, four- dimensional nature of the marine environment causes its own issues, boosting the need for a dedicated scientific effort in marine geomorphometry. This contribution offers the first comprehensive review of marine geomorphometry to date. It addresses all the five main steps of geomorphometry, from data collection to the application of terrain attributes and features. We focus on how these steps are relevant to marine geomorphometry and also highlight differences from terrestrial geomorphometry. We conclude with recommendations and reflections on the future of marine geomorphometry.peer-reviewe

    Combined flooding and water quality monitoring during short extreme events using Sentinel 2: the case study of Gloria storm in Ebro delta

    Get PDF
    Short extreme events have significant impact on landscape and ecosystems in low-lying and exposed areas such as deltaic systems. In this context, this paper proposes a combined methodology for the mapping and monitoring of the flooding and water quality dynamics of coastal areas under extreme storms from Sentinel 2 imagery. The proposed methodology has been applied in a coastal bay of the Ebro Delta (Catalonia, NE Spain) to evaluate jointly the impact of Gloria storm (January 2020) in land-flooding and water quality. The experimental results show that the Gloria storm had a strong morphological impact and altered the water quality (chl-a) dynamics. The results show a recovery in terms of water quality after some weeks but in contrast the coastal morphology did not show the same degree of resilience. This paper is the first step of an overall goal that is to set the bases in a long term, for a workflow for rapid response and continuous monitoring of storm effects in coastal areas and/or highly valuable ecosystems such as the Ebro Delta.This research was partially funded by the project New-TechAqua (European Union's Programme H2020, GA 862658). J. Soriano-González held a pre-doctoral grant funded by by Agència de Gestió d’Ajuts Universitaris I de Recerca (2020FI_B2 00148)Peer ReviewedObjectius de Desenvolupament Sostenible::14 - Vida SubmarinaObjectius de Desenvolupament Sostenible::13 - Acció per al ClimaPostprint (published version

    Remote detection of invasive alien species

    Get PDF
    The spread of invasive alien species (IAS) is recognized as the most severe threat to biodiversity outside of climate change and anthropogenic habitat destruction. IAS negatively impact ecosystems, local economies, and residents. They are especially problematic because once established, they give rise to positive feedbacks, increasing the likelihood of further invasions and spread. The integration of remote sensing (RS) to the study of invasion, in addition to contributing to our understanding of invasion processes and impacts to biodiversity, has enabled managers to monitor invasions and predict the spread of IAS, thus supporting biodiversity conservation and management action. This chapter focuses on RS capabilities to detect and monitor invasive plant species across terrestrial, riparian, aquatic, and human-modified ecosystems. All of these environments have unique species assemblages and their own optimal methodology for effective detection and mapping, which we discuss in detail

    Modelling Coastal Vulnerability: An integrated approach to coastal management using Earth Observation techniques in Belize

    Get PDF
    This thesis presents an adapted method to derive coastal vulnerability through the application of Earth Observation (EO) data in the quantification of forcing variables. A modelled assessment for vulnerability has been produced using the Coastal Vulnerability Index (CVI) approach developed by Gornitz (1991) and enhanced using Machine learning (ML) clustering. ML has been employed to divide the coastline based on the geotechnical conditions observed to establish relative vulnerability. This has been demonstrated to alleviate bias and enhanced the scalability of the approach – especially in areas with poor data coverage – a known hinderance to the CVI approach (Koroglu et al., 2019).Belize provides a demonstrator for this novel methodology due to limited existing data coverage and the recent removal of the Mesoamerican Reef from the International Union for Conservation of Nature (IUCN) List of World Heritage In Danger. A strong characterization of the coastal zone and associated pressures is paramount to support effective management and enhance resilience to ensure this status is retained.Areas of consistent vulnerability have been identified using the KMeans classifier; predominantly Caye Caulker and San Pedro. The ability to automatically scale to conditions in Belize has demonstrated disparities to vulnerability along the coastline and has provided more realistic estimates than the traditional CVI groups. Resulting vulnerability assessments have indicated that 19% of the coastline at the highest risk with a seaward distribution to high risk observed. Using data derived using Sentinel-2, this study has also increased the accuracy of existing habitat maps and enhanced survey coverage of uncharted areas.Results from this investigation have been situated within the ability to enhance community resilience through supporting regional policies. Further research should be completed to test the robust nature of this model through an application in regions with different geographic conditions and with higher resolution input datasets
    • …
    corecore