12 research outputs found

    Functional analyses of pSer and pThr binding domains

    Get PDF
    Since the discovery of the phosphotyrosine binding SH2 domain, many classes of phospho-recognition domains have been described which mediate many of the diverse cellular functions of protein kinases. Among those, FHA domains are unique in their ability to exclusively recognise pThr epitopes. The genome of the human pathogen Mycobacterium tuberculosis encodes 5 FHA domains, along with 11 Ser/Thr protein kinases. In the first part of this thesis, it is shown that Ser/Thr protein kinase PknB phosphorylates a threonine residue in an intrinsically unstructured region of protein FhaA. FhaA contains an FHA domain through which it interacts with and presumably inhibits MviN, a muropeptide flippase essential for cell-wall synthesis. Upon phosphorylation, the FHA domain binds the pThr epitope in an intra-molecular interaction occluding the MviN binding surface and alleviating its inhibition. Although the pThr-FHA interaction is relatively weak and nonspecific, the phosphorylated molecule nonetheless assumes a ‘closed’ conformation 99% of the time and is therefore able to outcompete the 2 orders of magnitude stronger bimolecular FHA-MviN interaction. In the second part, the phospho-binding capabilities of the human PIH1D1 protein were characterised. PIH1D1 has been shown to interact with a central chaperone assembly comprising the R2TP complex and Hsp90. It has also been shown to interact with co-factor Tel2 in a phospho-dependent manner essential for the stability of the ‘giant’ PI3-kinase-like kinases mTOR and SMG1. PIH1D1 is shown to function as a novel phospho-reader domain with a consensus binding sequence of D-pS-D-D, agreeing well with the substrate specificity of casein kinase 2. A mutant that abolishes phospho-binding was identified and used in binding experiments which showed that PIH1D1 interacts with the chaperone complex phospho-independently and that its phospho-binding capacity is utilised to recruit a subset of CK2 substrates to the chaperone complex

    Radiation protection programme. Progress report 1982. EUR 8486 DE/EN/FR

    Get PDF

    Utilisation de plantes agronomiques et lacustres dans la dépollution des sols contaminés par le RDX et le TNT : approches en laboratoire

    Get PDF
    Les plantes sont capables d'absorber, d'accumuler et de dégrader des polluants organiques. La phytodépollution est une technologie envisagée pour dépolluer les sols contaminés par des explosifs nitrés tels que l'hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) et le 2,4,6-trinitrotoluene (TNT). Nous avons étudié les capacités de plantes agronomiques et de plantes lacustres à tolérer, absorber et accumuler ces explosifs en reconstituant des sols artificiels contaminés avec ces composés. Plus particulièrement, nous avons testé la phytotoxicité de ces explosifs pour le riz. Des effets sur la germination sont observés avec le TNT. Celui-ci est très peu absorbé par les plantes, moins de 3 mg/g dans les racines de blé. Seulement une faible partie, inférieure à 25%, est transférée vers les parties aériennes. Des études sur des cultures cellulaires ont permis de mettre en évidence les principales voies métaboliques de dégradation du TNT, par réduction puis conjugaison à un ou deux sucres en C6. Les seuls symptômes observés avec le RDX sont des nécroses sur aux extrémités des parties aériennes. Les plantes agronomiques ont absorbé et accumulé dans les parties aériennes de plus grandes quantités de RDX, jusqu'à 64,5 mg/g chez le blé, que les plantes lacustres, jusqu'à 33 mg/g chez le scirpe lacustre. Quelles que soient les plantes plus de 80% sont transférés vers les parties aériennes. L'absence de dégradation du RDX a aussi été mise en évidence, mettant l'accent sur un piégeage direct du RDX dans la matrice pariétale. L'utilisation de végétaux est donc envisageable pour le RDX mais elle va nécessiter une récolte suivie d'une incinération des plantes pour détruire la pollution. L'étude d'un site contaminé a permis d'observer l'implantation de la végétation et de mesurer la capacité des plantes endogènes à absorber les explosifs. Cette étude a mis en évidence les difficultés liées à la biodisponibilité des explosifs dans le sol et à la présence de co-contaminants qui pourraient limiter l'implantation de végétaux. ABSTRACT : Production of explosives, TNT and RDX, had led to multiple and heterogeneous contaminated sites. Phytoremediation is an emerging strategy in which plants will uptake, degrade and/or accumulate pollutants. To detoxify contaminated sites, plants must be able to grow on. Although TNT decreased germination rate and necrotic symptoms were observed with RDX, explosives did not decrease growth of rice at concentrations of over than 500 mg/kg. We tested the ability of agronomic and aquatic plants to uptake and to accumulate explosives. More than 80% of RDX was accumulated in aerial parts without degradation, up to 64.5 mg/g. TNT was mainly located in roots and less than 25% of uptaken TNT was translocated to aerial parts. Aquatic plants uptook lower quantities of explosives but the distribution within the plant is the same for each explosive. We studied the metabolism of TNT and RDX in tobacco cell suspension culture. It evidenced a rapid reduction and conjugation of TNT with formation of hydroxylamines and amines conjugated to glycose. Quantification of explosives in plants harvested in a contaminated site showed that TNT or metabolites were not found in plants but RDX was detected in lower quantities than in our laboratory experiments. Moreover, site sediments were toxic to rice, then we mixed sediment with non-contaminated soil to decrease phytotoxicity. In-situ tests are necessary to determine efficiency of phytoremediation on soil from contaminated site, due to the low bioavailability of explosives and to the presence of co-contaminants
    corecore