4,657 research outputs found

    An Evaluation of Score Level Fusion Approaches for Fingerprint and Finger-vein Biometrics

    Get PDF
    Biometric systems have to address many requirements, such as large population coverage, demographic diversity, varied deployment environment, as well as practical aspects like performance and spoofing attacks. Traditional unimodal biometric systems do not fully meet the aforementioned requirements making them vulnerable and susceptible to different types of attacks. In response to that, modern biometric systems combine multiple biometric modalities at different fusion levels. The fused score is decisive to classify an unknown user as a genuine or impostor. In this paper, we evaluate combinations of score normalization and fusion techniques using two modalities (fingerprint and finger-vein) with the goal of identifying which one achieves better improvement rate over traditional unimodal biometric systems. The individual scores obtained from finger-veins and fingerprints are combined at score level using three score normalization techniques (min-max, z-score, hyperbolic tangent) and four score fusion approaches (minimum score, maximum score, simple sum, user weighting). The experimental results proved that the combination of hyperbolic tangent score normalization technique with the simple sum fusion approach achieve the best improvement rate of 99.98%.Comment: 10 pages, 5 figures, 3 tables, conference, NISK 201

    Multimodal person recognition for human-vehicle interaction

    Get PDF
    Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies

    Hybrid Fusion for Biometrics: Combining Score-level and Decision-level Fusion

    Get PDF
    A general framework of fusion at decision level, which works on ROCs instead of matching scores, is investigated. Under this framework, we further propose a hybrid fusion method, which combines the score-level and decision-level fusions, taking advantage of both fusion modes. The hybrid fusion adaptively tunes itself between the two levels of fusion, and improves the final performance over the original two levels. The proposed hybrid fusion is simple and effective for combining different biometrics

    Biometric presentation attack detection: beyond the visible spectrum

    Full text link
    The increased need for unattended authentication in multiple scenarios has motivated a wide deployment of biometric systems in the last few years. This has in turn led to the disclosure of security concerns specifically related to biometric systems. Among them, presentation attacks (PAs, i.e., attempts to log into the system with a fake biometric characteristic or presentation attack instrument) pose a severe threat to the security of the system: any person could eventually fabricate or order a gummy finger or face mask to impersonate someone else. In this context, we present a novel fingerprint presentation attack detection (PAD) scheme based on i) a new capture device able to acquire images within the short wave infrared (SWIR) spectrum, and i i) an in-depth analysis of several state-of-theart techniques based on both handcrafted and deep learning features. The approach is evaluated on a database comprising over 4700 samples, stemming from 562 different subjects and 35 different presentation attack instrument (PAI) species. The results show the soundness of the proposed approach with a detection equal error rate (D-EER) as low as 1.35% even in a realistic scenario where five different PAI species are considered only for testing purposes (i.e., unknown attacks
    corecore