567 research outputs found

    Probabilistic Graphical Models for Credibility Analysis in Evolving Online Communities

    Get PDF
    One of the major hurdles preventing the full exploitation of information from online communities is the widespread concern regarding the quality and credibility of user-contributed content. Prior works in this domain operate on a static snapshot of the community, making strong assumptions about the structure of the data (e.g., relational tables), or consider only shallow features for text classification. To address the above limitations, we propose probabilistic graphical models that can leverage the joint interplay between multiple factors in online communities --- like user interactions, community dynamics, and textual content --- to automatically assess the credibility of user-contributed online content, and the expertise of users and their evolution with user-interpretable explanation. To this end, we devise new models based on Conditional Random Fields for different settings like incorporating partial expert knowledge for semi-supervised learning, and handling discrete labels as well as numeric ratings for fine-grained analysis. This enables applications such as extracting reliable side-effects of drugs from user-contributed posts in healthforums, and identifying credible content in news communities. Online communities are dynamic, as users join and leave, adapt to evolving trends, and mature over time. To capture this dynamics, we propose generative models based on Hidden Markov Model, Latent Dirichlet Allocation, and Brownian Motion to trace the continuous evolution of user expertise and their language model over time. This allows us to identify expert users and credible content jointly over time, improving state-of-the-art recommender systems by explicitly considering the maturity of users. This also enables applications such as identifying helpful product reviews, and detecting fake and anomalous reviews with limited information.Comment: PhD thesis, Mar 201

    Inferring functional modules of protein families with probabilistic topic models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome and metagenome studies have identified thousands of protein families whose functions are poorly understood and for which techniques for functional characterization provide only partial information. For such proteins, the genome context can give further information about their functional context.</p> <p>Results</p> <p>We describe a Bayesian method, based on a probabilistic topic model, which directly identifies functional modules of protein families. The method explores the co-occurrence patterns of protein families across a collection of sequence samples to infer a probabilistic model of arbitrarily-sized functional modules.</p> <p>Conclusions</p> <p>We show that our method identifies protein modules - some of which correspond to well-known biological processes - that are tightly interconnected with known functional interactions and are different from the interactions identified by pairwise co-occurrence. The modules are not specific to any given organism and may combine different realizations of a protein complex or pathway within different taxa.</p

    Gene function finding through cross-organism ensemble learning

    Get PDF
    Background: Structured biological information about genes and proteins is a valuable resource to improve discovery and understanding of complex biological processes via machine learning algorithms. Gene Ontology (GO) controlled annotations describe, in a structured form, features and functions of genes and proteins of many organisms. However, such valuable annotations are not always reliable and sometimes are incomplete, especially for rarely studied organisms. Here, we present GeFF (Gene Function Finder), a novel cross-organism ensemble learning method able to reliably predict new GO annotations of a target organism from GO annotations of another source organism evolutionarily related and better studied. Results: Using a supervised method, GeFF predicts unknown annotations from random perturbations of existing annotations. The perturbation consists in randomly deleting a fraction of known annotations in order to produce a reduced annotation set. The key idea is to train a supervised machine learning algorithm with the reduced annotation set to predict, namely to rebuild, the original annotations. The resulting prediction model, in addition to accurately rebuilding the original known annotations for an organism from their perturbed version, also effectively predicts new unknown annotations for the organism. Moreover, the prediction model is also able to discover new unknown annotations in different target organisms without retraining.We combined our novel method with different ensemble learning approaches and compared them to each other and to an equivalent single model technique. We tested the method with five different organisms using their GO annotations: Homo sapiens, Mus musculus, Bos taurus, Gallus gallus and Dictyostelium discoideum. The outcomes demonstrate the effectiveness of the cross-organism ensemble approach, which can be customized with a trade-off between the desired number of predicted new annotations and their precision.A Web application to browse both input annotations used and predicted ones, choosing the ensemble prediction method to use, is publicly available at http://tiny.cc/geff/. Conclusions: Our novel cross-organism ensemble learning method provides reliable predicted novel gene annotations, i.e., functions, ranked according to an associated likelihood value. They are very valuable both to speed the annotation curation, focusing it on the prioritized new annotations predicted, and to complement known annotations available
    corecore