5,365 research outputs found

    Connecting the dots: a multi-pivot approach to data exploration

    No full text
    The purpose of data browsers is to help users identify and query data effectively without being overwhelmed by large complex graphs of data. A proposed solution to identify and query data in graph-based datasets is Pivoting (or set-oriented browsing), a many-to-many graph browsing technique that allows users to navigate the graph by starting from a set of instances followed by navigation through common links. Relying solely on navigation, however, makes it difficult for users to find paths or even see if the element of interest is in the graph when the points of interest may be many vertices apart. Further challenges include finding paths which require combinations of forward and backward links in order to make the necessary connections which further adds to the complexity of pivoting. In order to mitigate the effects of these problems and enhance the strengths of pivoting we present a multi-pivot approach which we embodied in tool called Visor. Visor allows users to explore from multiple points in the graph, helping users connect key points of interest in the graph on the conceptual level, visually occluding the remainder parts of the graph, thus helping create a road-map for navigation. We carried out an user study to demonstrate the viability of our approach

    Designed for Delight: Surprising Visual-Tactile Experiences Using 3D Printing in Lighting Design

    Get PDF
    Designing for surprise is a useful tool for designers and can elevate a product from mundane to memorable, drawing attention and inviting engagement. Existing strategies have explored surprise in product design through the exploration of sensory incongruities, most notably visual-tactile incongruities: when an object looks different to what it feels like to touch. There are two digital technologies that offer new opportunities to investigate surprise in tangible-embedded interactive systems: 3D printing and tangible interaction through sensor controls. Research is yet to investigate how visually tactually incongruous 3D printing can offer new strategies for eliciting surprise in lighting design through tangible-embedded interactive systems. This research addresses this identified gap by assessing the applicability of the Ludden’s strategies to surprise through 3D printing. This was performed through the design of a series of experimental 3D printed objects and lights that sought to surprise by using visual-tactile incongruities. We suggest new approaches expressed through the final designs of four interactive lights; objects designed to inspire delight through their unique interactions and surprising qualities. We report on new strategies to surprise by using an experiential gap between vision and touch through 3D printing and we report the findings from user-testing sessions

    Concept mapping: A dynamic, individualized and qualitative method for eliciting meaning

    Get PDF
    The purpose of this theoretical article is to explore the use of concept mapping as a qualitative research method that is represented as a form of multimodal communication. This framework strives to move mapping beyond quantitative analysis by inserting art and humanness into the process. This proposed framework provides a means to highlight the ways in which people learn, understand, and interpret the world around them. Three categories for understanding have been identified by the authors to help individuals create, interpret, and understand qualitative concept maps. These categories include the following: Voice: Tri-directional Voice and Mutual Absorption; Detail in the Parts & Recognition of the Whole: Uniqueness, Aesthetic Distance and Emplacement; and Sensory Experience: Intellectual + Emotional Investment and Humanness. Each of these categories is interconnected, and informs each other in a dialectical way, therefore creating a piece of visual data with which the participant, researcher and audience can interact

    Multi-Level Audio-Visual Interactions in Speech and Language Perception

    Get PDF
    That we perceive our environment as a unified scene rather than individual streams of auditory, visual, and other sensory information has recently provided motivation to move past the long-held tradition of studying these systems separately. Although they are each unique in their transduction organs, neural pathways, and cortical primary areas, the senses are ultimately merged in a meaningful way which allows us to navigate the multisensory world. Investigating how the senses are merged has become an increasingly wide field of research in recent decades, with the introduction and increased availability of neuroimaging techniques. Areas of study range from multisensory object perception to cross-modal attention, multisensory interactions, and integration. This thesis focuses on audio-visual speech perception, with special focus on facilitatory effects of visual information on auditory processing. When visual information is concordant with auditory information, it provides an advantage that is measurable in behavioral response times and evoked auditory fields (Chapter 3) and in increased entrainment to multisensory periodic stimuli reflected by steady-state responses (Chapter 4). When the audio-visual information is incongruent, the combination can often, but not always, combine to form a third, non-physically present percept (known as the McGurk effect). This effect is investigated (Chapter 5) using real word stimuli. McGurk percepts were not robustly elicited for a majority of stimulus types, but patterns of responses suggest that the physical and lexical properties of the auditory and visual stimulus may affect the likelihood of obtaining the illusion. Together, these experiments add to the growing body of knowledge that suggests that audio-visual interactions occur at multiple stages of processing

    The Visualizations Behind the Genetics of Athletic Injury and Performance

    Get PDF

    A Functional Model For Information Exploration Systems

    Full text link
    Information exploration tasks are inherently complex, ill-structured, and involve sequences of actions usually spread over many sessions. When exploring a dataset, users tend to experiment higher degrees of uncertainty, mostly raised by knowledge gaps concerning the information sources, the task, and the efficiency of the chosen exploration actions, strategies, and tools in supporting the task solution process. Provided these concerns, exploration tools should be designed with the goal of leveraging the mapping between user's cognitive actions and solution strategies onto the current systems' operations. However, state-of-the-art systems fail in providing an expressive set of operations that covers a wide range of exploration problems. There is not a common understanding of neither which operators are required nor in which ways they can be used by explorers. In order to mitigate these shortcomings, this work presents a formal framework of exploration operations expressive enough to describe at least the majority of state-of-the-art exploration interfaces and tasks. We also show how the framework leveraged a new evaluation approach, where we draw precise comparisons between tools concerning the range of exploration tasks they support.Comment: 27 page

    Pointing and pantomime in wild apes? Female bonobos use referential and iconic gestures to request genito-genital rubbing

    Get PDF
    Referential and iconic gesturing provide a means to flexibly and intentionally share information about specific entities, locations, or goals. The extent to which nonhuman primates use such gestures is therefore of special interest for understanding the evolution of human language. Here, we describe novel observations of wild female bonobos (Pan paniscus) using referential and potentially iconic gestures to initiate genito-genital (GG) rubbing, which serves important functions in reducing social tension and facilitating cooperation. We collected data from a habituated community of bonobos at Luikotale, DRC, and analysed n = 138 independent gesture bouts made by n = 11 females. Gestures were coded in real time or from video. In addition to meeting the criteria for intentionality, in form and function these gestures resemble pointing and pantomime–two hallmarks of human communication–in the ways in which they indicated the relevant body part or action involved in the goal of GG rubbing. Moreover, the gestures led to GG rubbing in 83.3% of gesture bouts, which in turn increased tolerance in feeding contexts between the participants. We discuss how biologically relevant contexts in which individuals are motivated to cooperate may facilitate the emergence of language precursors to enhance communication in wild apes

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care
    corecore