485 research outputs found

    Fusing multi-scale context-aware information representation for automatic in-field pest detection and recognition

    Get PDF
    Automatic in-field pest detection and recognition using mobile vision technique is a hot topic in modern intelligent agriculture, but suffers from serious challenges including complexity of wild environment, detection of tiny size pest and classification of multiple classes of pests. While recent deep learning based mobile vision techniques have shown some success in overcoming above issues, one key problem is that towards large-scale multiple species of pest data, imbalanced classes significantly reduce their detection and recognition accuracy. In this paper, we propose a novel two-stages mobile vision based cascading pest detection approach (DeepPest) towards large-scale multiple species of pest data. This approach firstly extracts multi-scale contextual information of the images as prior knowledge to build up a context-aware attention network for initial classification of pest images into crop categories. Then, a multi-projection pest detection model (MDM) is proposed and trained by crop-related pest images. The role of MDM can combine pest contextual information from low-level convolutional layers with these in high-level convolutional layers for generating the super-resolved feature. Finally, we utilize the attention mechanism and data augmentation to improve the effectiveness of in-field pest detection. We evaluate our method on our newly established large-scale dataset In-Field Pest in Food Crop (IPFC) and sufficient experimental results show that DeepPest proposed in this paper outperforms state-of-the-art object detection methods in detecting in-field pest

    AgriPest-YOLO: A rapid light-trap agricultural pest detection method based on deep learning

    Get PDF
    Light traps have been widely used for automatic monitoring of pests in the field as an alternative to time-consuming and labor-intensive manual investigations. However, the scale variation, complex background and dense distribution of pests in light-trap images bring challenges to the rapid and accurate detection when utilizing vision technology. To overcome these challenges, in this paper, we put forward a lightweight pest detection model, AgriPest-YOLO, for achieving a well-balanced between efficiency, accuracy and model size for pest detection. Firstly, we propose a coordination and local attention (CLA) mechanism for obtaining richer and smoother pest features as well as reducing the interference of noise, especially for pests with complex backgrounds. Secondly, a novel grouping spatial pyramid pooling fast (GSPPF) is designed, which enriches the multi-scale representation of pest features via fusing multiple receptive fields of different scale features. Finally, soft-NMS is introduced in the prediction layer to optimize the final prediction results of overlapping pests. We evaluated the performance of our method on a large scale multi pest image dataset containing 24 classes and 25k images. Experimental results show that AgriPest-YOLO achieves end-to-end real-time pest detection with high accuracy, obtaining 71.3% mAP on the test dataset, outperforming the classical detection models (Faster RCNN, Cascade RCNN, Dynamic RCNN,YOLOX and YOLOv4) and lightweight detection models (Mobilenetv3-YOLOv4, YOLOv5 and YOLOv4-tiny), meanwhile our method demonstrates better balanced performance in terms of model size, detection speed and accuracy. The method has good accuracy and efficiency in detecting multi-class pests from light-trap images which is a key component of pest forecasting and intelligent pest monitoring technology

    TeaDiseaseNet: multi-scale self-attentive tea disease detection

    Get PDF
    Accurate detection of tea diseases is essential for optimizing tea yield and quality, improving production, and minimizing economic losses. In this paper, we introduce TeaDiseaseNet, a novel disease detection method designed to address the challenges in tea disease detection, such as variability in disease scales and dense, obscuring disease patterns. TeaDiseaseNet utilizes a multi-scale self-attention mechanism to enhance disease detection performance. Specifically, it incorporates a CNN-based module for extracting features at multiple scales, effectively capturing localized information such as texture and edges. This approach enables a comprehensive representation of tea images. Additionally, a self-attention module captures global dependencies among pixels, facilitating effective interaction between global information and local features. Furthermore, we integrate a channel attention mechanism, which selectively weighs and combines the multi-scale features, eliminating redundant information and enabling precise localization and recognition of tea disease information across diverse scales and complex backgrounds. Extensive comparative experiments and ablation studies validate the effectiveness of the proposed method, demonstrating superior detection results in scenarios characterized by complex backgrounds and varying disease scales. The presented method provides valuable insights for intelligent tea disease diagnosis, with significant potential for improving tea disease management and production

    Automatic pest identification system in the greenhouse based on deep learning and machine vision

    Get PDF
    Monitoring and understanding pest population dynamics is essential to greenhouse management for effectively preventing infestations and crop diseases. Image-based pest recognition approaches demonstrate the potential for real-time pest monitoring. However, the pest detection models are challenged by the tiny pest scale and complex image background. Therefore, high-quality image datasets and reliable pest detection models are required. In this study, we developed a trapping system with yellow sticky paper and LED light for automatic pest image collection, and proposed an improved YOLOv5 model with copy-pasting data augmentation for pest recognition. We evaluated the system in cherry tomato and strawberry greenhouses during 40 days of continuous monitoring. Six diverse pests, including tobacco whiteflies, leaf miners, aphids, fruit flies, thrips, and houseflies, are observed in the experiment. The results indicated that the proposed improved YOLOv5 model obtained an average recognition accuracy of 96% and demonstrated superiority in identification of nearby pests over the original YOLOv5 model. Furthermore, the two greenhouses show different pest numbers and populations dynamics, where the number of pests in the cherry tomato greenhouse was approximately 1.7 times that in the strawberry greenhouse. The developed time-series pest-monitoring system could provide insights for pest control and further applied to other greenhouses

    Review of the state of the art of deep learning for plant diseases: a broad analysis and discussion

    Get PDF
    Deep learning (DL) represents the golden era in the machine learning (ML) domain, and it has gradually become the leading approach in many fields. It is currently playing a vital role in the early detection and classification of plant diseases. The use of ML techniques in this field is viewed as having brought considerable improvement in cultivation productivity sectors, particularly with the recent emergence of DL, which seems to have increased accuracy levels. Recently, many DL architectures have been implemented accompanying visualisation techniques that are essential for determining symptoms and classifying plant diseases. This review investigates and analyses the most recent methods, developed over three years leading up to 2020, for training, augmentation, feature fusion and extraction, recognising and counting crops, and detecting plant diseases, including how these methods can be harnessed to feed deep classifiers and their effects on classifier accuracy

    Skip DETR: end-to-end Skip connection model for small object detection in forestry pest dataset

    Get PDF
    Object detection has a wide range of applications in forestry pest control. However, forest pest detection faces the challenges of a lack of datasets and low accuracy of small target detection. DETR is an end-to-end object detection model based on the transformer, which has the advantages of simple structure and easy migration. However, the object query initialization of DETR is random, and random initialization will cause the model convergence to be slow and unstable. At the same time, the correlation between different network layers is not strong, resulting in DETR is not very ideal in small object training, optimization, and performance. In order to alleviate these problems, we propose Skip DETR, which improves the feature fusion between different network layers through skip connection and the introduction of spatial pyramid pooling layers so as to improve the detection results of small objects. We performed experiments on Forestry Pest Datasets, and the experimental results showed significant AP improvements in our method. When the value of IoU is 0.5, our method is 7.7% higher than the baseline and 6.1% higher than the detection result of small objects. Experimental results show that the application of skip connection and spatial pyramid pooling layer in the detection framework can effectively improve the effect of small-sample obiect detection

    AGI for Agriculture

    Full text link
    Artificial General Intelligence (AGI) is poised to revolutionize a variety of sectors, including healthcare, finance, transportation, and education. Within healthcare, AGI is being utilized to analyze clinical medical notes, recognize patterns in patient data, and aid in patient management. Agriculture is another critical sector that impacts the lives of individuals worldwide. It serves as a foundation for providing food, fiber, and fuel, yet faces several challenges, such as climate change, soil degradation, water scarcity, and food security. AGI has the potential to tackle these issues by enhancing crop yields, reducing waste, and promoting sustainable farming practices. It can also help farmers make informed decisions by leveraging real-time data, leading to more efficient and effective farm management. This paper delves into the potential future applications of AGI in agriculture, such as agriculture image processing, natural language processing (NLP), robotics, knowledge graphs, and infrastructure, and their impact on precision livestock and precision crops. By leveraging the power of AGI, these emerging technologies can provide farmers with actionable insights, allowing for optimized decision-making and increased productivity. The transformative potential of AGI in agriculture is vast, and this paper aims to highlight its potential to revolutionize the industry
    corecore