3,732 research outputs found

    Lidar-based Obstacle Detection and Recognition for Autonomous Agricultural Vehicles

    Get PDF
    Today, agricultural vehicles are available that can drive autonomously and follow exact route plans more precisely than human operators. Combined with advancements in precision agriculture, autonomous agricultural robots can reduce manual labor, improve workflow, and optimize yield. However, as of today, human operators are still required for monitoring the environment and acting upon potential obstacles in front of the vehicle. To eliminate this need, safety must be ensured by accurate and reliable obstacle detection and avoidance systems.In this thesis, lidar-based obstacle detection and recognition in agricultural environments has been investigated. A rotating multi-beam lidar generating 3D point clouds was used for point-wise classification of agricultural scenes, while multi-modal fusion with cameras and radar was used to increase performance and robustness. Two research perception platforms were presented and used for data acquisition. The proposed methods were all evaluated on recorded datasets that represented a wide range of realistic agricultural environments and included both static and dynamic obstacles.For 3D point cloud classification, two methods were proposed for handling density variations during feature extraction. One method outperformed a frequently used generic 3D feature descriptor, whereas the other method showed promising preliminary results using deep learning on 2D range images. For multi-modal fusion, four methods were proposed for combining lidar with color camera, thermal camera, and radar. Gradual improvements in classification accuracy were seen, as spatial, temporal, and multi-modal relationships were introduced in the models. Finally, occupancy grid mapping was used to fuse and map detections globally, and runtime obstacle detection was applied on mapped detections along the vehicle path, thus simulating an actual traversal.The proposed methods serve as a first step towards full autonomy for agricultural vehicles. The study has thus shown that recent advancements in autonomous driving can be transferred to the agricultural domain, when accurate distinctions are made between obstacles and processable vegetation. Future research in the domain has further been facilitated with the release of the multi-modal obstacle dataset, FieldSAFE

    Multi-Modal Trip Hazard Affordance Detection On Construction Sites

    Full text link
    Trip hazards are a significant contributor to accidents on construction and manufacturing sites, where over a third of Australian workplace injuries occur [1]. Current safety inspections are labour intensive and limited by human fallibility,making automation of trip hazard detection appealing from both a safety and economic perspective. Trip hazards present an interesting challenge to modern learning techniques because they are defined as much by affordance as by object type; for example wires on a table are not a trip hazard, but can be if lying on the ground. To address these challenges, we conduct a comprehensive investigation into the performance characteristics of 11 different colour and depth fusion approaches, including 4 fusion and one non fusion approach; using colour and two types of depth images. Trained and tested on over 600 labelled trip hazards over 4 floors and 2000m2\mathrm{^{2}} in an active construction site,this approach was able to differentiate between identical objects in different physical configurations (see Figure 1). Outperforming a colour-only detector, our multi-modal trip detector fuses colour and depth information to achieve a 4% absolute improvement in F1-score. These investigative results and the extensive publicly available dataset moves us one step closer to assistive or fully automated safety inspection systems on construction sites.Comment: 9 Pages, 12 Figures, 2 Tables, Accepted to Robotics and Automation Letters (RA-L

    SegICP: Integrated Deep Semantic Segmentation and Pose Estimation

    Full text link
    Recent robotic manipulation competitions have highlighted that sophisticated robots still struggle to achieve fast and reliable perception of task-relevant objects in complex, realistic scenarios. To improve these systems' perceptive speed and robustness, we present SegICP, a novel integrated solution to object recognition and pose estimation. SegICP couples convolutional neural networks and multi-hypothesis point cloud registration to achieve both robust pixel-wise semantic segmentation as well as accurate and real-time 6-DOF pose estimation for relevant objects. Our architecture achieves 1cm position error and <5^\circ$ angle error in real time without an initial seed. We evaluate and benchmark SegICP against an annotated dataset generated by motion capture.Comment: IROS camera-read

    Viewfinder: final activity report

    Get PDF
    The VIEW-FINDER project (2006-2009) is an 'Advanced Robotics' project that seeks to apply a semi-autonomous robotic system to inspect ground safety in the event of a fire. Its primary aim is to gather data (visual and chemical) in order to assist rescue personnel. A base station combines the gathered information with information retrieved from off-site sources. The project addresses key issues related to map building and reconstruction, interfacing local command information with external sources, human-robot interfaces and semi-autonomous robot navigation. The VIEW-FINDER system is a semi-autonomous; the individual robot-sensors operate autonomously within the limits of the task assigned to them, that is, they will autonomously navigate through and inspect an area. Human operators monitor their operations and send high level task requests as well as low level commands through the interface to any nodes in the entire system. The human interface has to ensure the human supervisor and human interveners are provided a reduced but good and relevant overview of the ground and the robots and human rescue workers therein

    Event-based sensor fusion in human-machine teaming

    Get PDF
    Realizing intelligent production systems where machines and human workers can team up seamlessly demands a yet unreached level of situational awareness. The machines&#39; leverage to reach such awareness is to amalgamate a wide variety of sensor modalities through multisensor data fusion. A particularly promising direction to establishing human-like collaborations can be seen in the use of neuro-inspired sensing and computing technologies due to their resemblance with human cognitive processing. This note discusses the concept of integrating neuromorphic sensing modalities into classical sensor fusion frameworks by exploiting event-based fusion and filtering methods that combine time-periodic process models with event-triggered sensor data. Event-based sensor fusion hence adopts the operating principles of event-based sensors and even exhibits the ability to extract information from absent data. Thereby, it can be an enabler to harness the full information potential of the intrinsic spiking nature of event-driven sensors

    Object Detection Using LiDAR and Camera Fusion in Off-road Conditions

    Get PDF
    Seoses hüppelise huvi kasvuga autonoomsete sõidukite vastu viimastel aastatel on suurenenud ka vajadus täpsemate ja töökindlamate objektituvastuse meetodite järele. Kuigi tänu konvolutsioonilistele närvivõrkudele on palju edu saavutatud 2D objektituvastuses, siis võrreldavate tulemuste saavutamine 3D maailmas on seni jäänud unistuseks. Põhjuseks on mitmesugused probleemid eri modaalsusega sensorite andmevoogude ühitamisel, samuti on 3D maailmas märgendatud andmestike loomine aeganõudvam ja kallim. Sõltumata sellest, kas kasutame objektide kauguse hindamiseks stereo kaamerat või lidarit, kaasnevad andmevoogude ühitamisega ajastusprobleemid, mis raskendavad selliste lahenduste kasutamist reaalajas. Lisaks on enamus olemasolevaid lahendusi eelkõige välja töötatud ja testitud linnakeskkonnas liikumiseks.Töös pakutakse välja meetod 3D objektituvastuseks, mis põhineb 2D objektituvastuse tulemuste (objekte ümbritsevad kastid või segmenteerimise maskid) projitseerimisel 3D punktipilve ning saadud punktipilve filtreerimisel klasterdamismeetoditega. Tulemusi võrreldakse lihtsa termokaamera piltide filtreerimisel põhineva lahendusega. Täiendavalt viiakse läbi põhjalikud eksperimendid parimate algoritmi parameetrite leidmiseks objektituvastuseks maastikul, saavutamaks suurimat võimalikku täpsust reaalajas.Since the boom in the industry of autonomous vehicles, the need for preciseenvironment perception and robust object detection methods has grown. While we are making progress with state-of-the-art in 2D object detection with approaches such as convolutional neural networks, the challenge remains in efficiently achieving the same level of performance in 3D. The reasons for this include limitations of fusing multi-modal data and the cost of labelling different modalities for training such networks. Whether we use a stereo camera to perceive scene’s ranging information or use time of flight ranging sensors such as LiDAR, ​ the existing pipelines for object detection in point clouds have certain bottlenecks and latency issues which tend to affect the accuracy of detection in real time speed. Moreover, ​ these existing methods are primarily implemented and tested over urban cityscapes.This thesis presents a fusion based approach for detecting objects in 3D by projecting the proposed 2D regions of interest (object’s bounding boxes) or masks (semantically segmented images) to point clouds and applies outlier filtering techniques to filter out target object points in projected regions of interest. Additionally, we compare it with human detection using thermal image thresholding and filtering. Lastly, we performed rigorous benchmarks over the off-road environments to identify potential bottlenecks and to find a combination of pipeline parameters that can maximize the accuracy and performance of real-time object detection in 3D point clouds

    Multi-level fusion of hard and soft information

    Get PDF
    Proceedings of: 17th International Conference on Information Fusion (FUSION 2014): Salamanca, Spain 7-10 July 2014.Driven by the underlying need for a yet to be developed framework for fusing heterogeneous data and information at different semantic levels coming from both sensory and human sources, we present some results of the research being conducted within the NATO Research Task Group IST-106/RTG-051 on "Information Filtering and Multi Source Information Fusion". As part of this on-going effort, we discuss here a first outcome of our investigation on multi-level fusion. It deals with removing the first hurdle between data/information sources and processes being at different levels: representation. Our contention here is that a common representation and description framework is the premise for enabling processing overarching different semantic levels. To this end we discuss here the use of the Battle Management Language (BML) as a way ("lingua franca") to encode sensory data, a priori and contextual knowledge, both as hard and soft data.Publicad
    corecore