71 research outputs found

    Face recognition by means of advanced contributions in machine learning

    Get PDF
    Face recognition (FR) has been extensively studied, due to both scientific fundamental challenges and current and potential applications where human identification is needed. FR systems have the benefits of their non intrusiveness, low cost of equipments and no useragreement requirements when doing acquisition, among the most important ones. Nevertheless, despite the progress made in last years and the different solutions proposed, FR performance is not yet satisfactory when more demanding conditions are required (different viewpoints, blocked effects, illumination changes, strong lighting states, etc). Particularly, the effect of such non-controlled lighting conditions on face images leads to one of the strongest distortions in facial appearance. This dissertation addresses the problem of FR when dealing with less constrained illumination situations. In order to approach the problem, a new multi-session and multi-spectral face database has been acquired in visible, Near-infrared (NIR) and Thermal infrared (TIR) spectra, under different lighting conditions. A theoretical analysis using information theory to demonstrate the complementarities between different spectral bands have been firstly carried out. The optimal exploitation of the information provided by the set of multispectral images has been subsequently addressed by using multimodal matching score fusion techniques that efficiently synthesize complementary meaningful information among different spectra. Due to peculiarities in thermal images, a specific face segmentation algorithm has been required and developed. In the final proposed system, the Discrete Cosine Transform as dimensionality reduction tool and a fractional distance for matching were used, so that the cost in processing time and memory was significantly reduced. Prior to this classification task, a selection of the relevant frequency bands is proposed in order to optimize the overall system, based on identifying and maximizing independence relations by means of discriminability criteria. The system has been extensively evaluated on the multispectral face database specifically performed for our purpose. On this regard, a new visualization procedure has been suggested in order to combine different bands for establishing valid comparisons and giving statistical information about the significance of the results. This experimental framework has more easily enabled the improvement of robustness against training and testing illumination mismatch. Additionally, focusing problem in thermal spectrum has been also addressed, firstly, for the more general case of the thermal images (or thermograms), and then for the case of facialthermograms from both theoretical and practical point of view. In order to analyze the quality of such facial thermograms degraded by blurring, an appropriate algorithm has been successfully developed. Experimental results strongly support the proposed multispectral facial image fusion, achieving very high performance in several conditions. These results represent a new advance in providing a robust matching across changes in illumination, further inspiring highly accurate FR approaches in practical scenarios.El reconeixement facial (FR) ha estat àmpliament estudiat, degut tant als reptes fonamentals científics que suposa com a les aplicacions actuals i futures on requereix la identificació de les persones. Els sistemes de reconeixement facial tenen els avantatges de ser no intrusius,presentar un baix cost dels equips d’adquisició i no la no necessitat d’autorització per part de l’individu a l’hora de realitzar l'adquisició, entre les més importants. De totes maneres i malgrat els avenços aconseguits en els darrers anys i les diferents solucions proposades, el rendiment del FR encara no resulta satisfactori quan es requereixen condicions més exigents (diferents punts de vista, efectes de bloqueig, canvis en la il·luminació, condicions de llum extremes, etc.). Concretament, l'efecte d'aquestes variacions no controlades en les condicions d'il·luminació sobre les imatges facials condueix a una de les distorsions més accentuades sobre l'aparença facial. Aquesta tesi aborda el problema del FR en condicions d'il·luminació menys restringides. Per tal d'abordar el problema, hem adquirit una nova base de dades de cara multisessió i multiespectral en l'espectre infraroig visible, infraroig proper (NIR) i tèrmic (TIR), sota diferents condicions d'il·luminació. En primer lloc s'ha dut a terme una anàlisi teòrica utilitzant la teoria de la informació per demostrar la complementarietat entre les diferents bandes espectrals objecte d’estudi. L'òptim aprofitament de la informació proporcionada pel conjunt d'imatges multiespectrals s'ha abordat posteriorment mitjançant l'ús de tècniques de fusió de puntuació multimodals, capaces de sintetitzar de manera eficient el conjunt d’informació significativa complementària entre els diferents espectres. A causa de les característiques particulars de les imatges tèrmiques, s’ha requerit del desenvolupament d’un algorisme específic per la segmentació de les mateixes. En el sistema proposat final, s’ha utilitzat com a eina de reducció de la dimensionalitat de les imatges, la Transformada del Cosinus Discreta i una distància fraccional per realitzar les tasques de classificació de manera que el cost en temps de processament i de memòria es va reduir de forma significa. Prèviament a aquesta tasca de classificació, es proposa una selecció de les bandes de freqüències més rellevants, basat en la identificació i la maximització de les relacions d'independència per mitjà de criteris discriminabilitat, per tal d'optimitzar el conjunt del sistema. El sistema ha estat àmpliament avaluat sobre la base de dades de cara multiespectral, desenvolupada pel nostre propòsit. En aquest sentit s'ha suggerit l’ús d’un nou procediment de visualització per combinar diferents bandes per poder establir comparacions vàlides i donar informació estadística sobre el significat dels resultats. Aquest marc experimental ha permès més fàcilment la millora de la robustesa quan les condicions d’il·luminació eren diferents entre els processos d’entrament i test. De forma complementària, s’ha tractat la problemàtica de l’enfocament de les imatges en l'espectre tèrmic, en primer lloc, pel cas general de les imatges tèrmiques (o termogrames) i posteriorment pel cas concret dels termogrames facials, des dels punt de vista tant teòric com pràctic. En aquest sentit i per tal d'analitzar la qualitat d’aquests termogrames facials degradats per efectes de desenfocament, s'ha desenvolupat un últim algorisme. Els resultats experimentals recolzen fermament que la fusió d'imatges facials multiespectrals proposada assoleix un rendiment molt alt en diverses condicions d’il·luminació. Aquests resultats representen un nou avenç en l’aportació de solucions robustes quan es contemplen canvis en la il·luminació, i esperen poder inspirar a futures implementacions de sistemes de reconeixement facial precisos en escenaris no controlats.Postprint (published version

    Soft Biometric Analysis: MultiPerson and RealTime Pedestrian Attribute Recognition in Crowded Urban Environments

    Get PDF
    Traditionally, recognition systems were only based on human hard biometrics. However, the ubiquitous CCTV cameras have raised the desire to analyze human biometrics from far distances, without people attendance in the acquisition process. Highresolution face closeshots are rarely available at far distances such that facebased systems cannot provide reliable results in surveillance applications. Human soft biometrics such as body and clothing attributes are believed to be more effective in analyzing human data collected by security cameras. This thesis contributes to the human soft biometric analysis in uncontrolled environments and mainly focuses on two tasks: Pedestrian Attribute Recognition (PAR) and person reidentification (reid). We first review the literature of both tasks and highlight the history of advancements, recent developments, and the existing benchmarks. PAR and person reid difficulties are due to significant distances between intraclass samples, which originate from variations in several factors such as body pose, illumination, background, occlusion, and data resolution. Recent stateoftheart approaches present endtoend models that can extract discriminative and comprehensive feature representations from people. The correlation between different regions of the body and dealing with limited learning data is also the objective of many recent works. Moreover, class imbalance and correlation between human attributes are specific challenges associated with the PAR problem. We collect a large surveillance dataset to train a novel gender recognition model suitable for uncontrolled environments. We propose a deep residual network that extracts several posewise patches from samples and obtains a comprehensive feature representation. In the next step, we develop a model for multiple attribute recognition at once. Considering the correlation between human semantic attributes and class imbalance, we respectively use a multitask model and a weighted loss function. We also propose a multiplication layer on top of the backbone features extraction layers to exclude the background features from the final representation of samples and draw the attention of the model to the foreground area. We address the problem of person reid by implicitly defining the receptive fields of deep learning classification frameworks. The receptive fields of deep learning models determine the most significant regions of the input data for providing correct decisions. Therefore, we synthesize a set of learning data in which the destructive regions (e.g., background) in each pair of instances are interchanged. A segmentation module determines destructive and useful regions in each sample, and the label of synthesized instances are inherited from the sample that shared the useful regions in the synthesized image. The synthesized learning data are then used in the learning phase and help the model rapidly learn that the identity and background regions are not correlated. Meanwhile, the proposed solution could be seen as a data augmentation approach that fully preserves the label information and is compatible with other data augmentation techniques. When reid methods are learned in scenarios where the target person appears with identical garments in the gallery, the visual appearance of clothes is given the most importance in the final feature representation. Clothbased representations are not reliable in the longterm reid settings as people may change their clothes. Therefore, developing solutions that ignore clothing cues and focus on identityrelevant features are in demand. We transform the original data such that the identityrelevant information of people (e.g., face and body shape) are removed, while the identityunrelated cues (i.e., color and texture of clothes) remain unchanged. A learned model on the synthesized dataset predicts the identityunrelated cues (shortterm features). Therefore, we train a second model coupled with the first model and learns the embeddings of the original data such that the similarity between the embeddings of the original and synthesized data is minimized. This way, the second model predicts based on the identityrelated (longterm) representation of people. To evaluate the performance of the proposed models, we use PAR and person reid datasets, namely BIODI, PETA, RAP, Market1501, MSMTV2, PRCC, LTCC, and MIT and compared our experimental results with stateoftheart methods in the field. In conclusion, the data collected from surveillance cameras have low resolution, such that the extraction of hard biometric features is not possible, and facebased approaches produce poor results. In contrast, soft biometrics are robust to variations in data quality. So, we propose approaches both for PAR and person reid to learn discriminative features from each instance and evaluate our proposed solutions on several publicly available benchmarks.This thesis was prepared at the University of Beria Interior, IT Instituto de Telecomunicações, Soft Computing and Image Analysis Laboratory (SOCIA Lab), Covilhã Delegation, and was submitted to the University of Beira Interior for defense in a public examination session

    Intelligent Biosignal Analysis Methods

    Get PDF
    This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others

    The Use of EEG-fMRI Features for Characterizing Mental Disorders

    Get PDF
    Determining clinically relevant biomarkers of mental disorders for reliably indicating pathophysiological processes or predicting therapeutic responses remains a major challenge, despite decades of research. Identifying such biomarkers can help patients significantly improve their quality of life and alleviate their suffering. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are non-invasive tools to investigate neurobiological mechanisms underlying mental disorders. Extracting and leveraging informative features from the high temporal resolution EEG and high spatial resolution fMRI may offer a more comprehensive understanding of brain spatial and temporal activities in health and disease. More importantly, this information can lead to a better understanding of the neurobiology of mental illness. This dissertation investigates the analyses and applications of extracting and combining informative features from EEG and fMRI, along with applying machine learning (ML) and computational methods for building biomarkers of mental illnesses. Several methodological challenges in the extraction of informative and reproducible features are also addressed. First, two types of EEG features obtained from resting state EEG-fMRI measurements were extracted: 1) broadband-multichannel EEG dynamical features, called EEG microstates (EEG-ms); and 2) heterogeneous, static EEG features. Using EEG features only, results elucidate that: 1) EEG-ms characteristics and information theoretical properties can successfully differentiate individuals with mood and anxiety disorders from healthy comparison subjects with potential applications for other clinical groups; and 2) heterogeneous static EEG features can successfully predict “brain aging,” noted here as BrainAGE from 468 EEG datasets, achieving a correlation of r=0.61 between predicted age and chronological age. Next, extracted EEG features were leveraged with fMRI to enhance the predictivity of BrainAGE and localizing the associated EEG-ms brain regions. More specifically, static EEG features were combined with resting state fMRI features to construct a multimodal BrainAGE predictor as a case study. Notably, it was found that EEG and fMRI contain a large portion of shared information about age, although each modality has its fingerprint of the aging process. The developed approach is a general purpose and be applied to predict other outcomes from brain imaging data. Similarly, EEG-ms features were integrated with fMRI to localize associated brain regions within fMRI space, revealing functional brain connectivity changes in individuals with mood and anxiety disorders as a case study. As a result, harnessing combined EEG-fMRI methods have enriched our knowledge some mental disorders and broadened our understanding of them with potential applications for other clinical groups and outcomes. Finally, this work evaluated the reproducibility and replication of EEG-ms analysis to address technical issues that have thus far been overlooked in the literature. In conclusion, the presented work describes technical methods developed to study and discover several clinically translatable biomarkers that can be reliably used to characterize various mental disorders

    Women in Artificial intelligence (AI)

    Get PDF
    This Special Issue, entitled "Women in Artificial Intelligence" includes 17 papers from leading women scientists. The papers cover a broad scope of research areas within Artificial Intelligence, including machine learning, perception, reasoning or planning, among others. The papers have applications to relevant fields, such as human health, finance, or education. It is worth noting that the Issue includes three papers that deal with different aspects of gender bias in Artificial Intelligence. All the papers have a woman as the first author. We can proudly say that these women are from countries worldwide, such as France, Czech Republic, United Kingdom, Australia, Bangladesh, Yemen, Romania, India, Cuba, Bangladesh and Spain. In conclusion, apart from its intrinsic scientific value as a Special Issue, combining interesting research works, this Special Issue intends to increase the invisibility of women in AI, showing where they are, what they do, and how they contribute to developments in Artificial Intelligence from their different places, positions, research branches and application fields. We planned to issue this book on the on Ada Lovelace Day (11/10/2022), a date internationally dedicated to the first computer programmer, a woman who had to fight the gender difficulties of her times, in the XIX century. We also thank the publisher for making this possible, thus allowing for this book to become a part of the international activities dedicated to celebrating the value of women in ICT all over the world. With this book, we want to pay homage to all the women that contributed over the years to the field of AI

    Socio-Cognitive and Affective Computing

    Get PDF
    Social cognition focuses on how people process, store, and apply information about other people and social situations. It focuses on the role that cognitive processes play in social interactions. On the other hand, the term cognitive computing is generally used to refer to new hardware and/or software that mimics the functioning of the human brain and helps to improve human decision-making. In this sense, it is a type of computing with the goal of discovering more accurate models of how the human brain/mind senses, reasons, and responds to stimuli. Socio-Cognitive Computing should be understood as a set of theoretical interdisciplinary frameworks, methodologies, methods and hardware/software tools to model how the human brain mediates social interactions. In addition, Affective Computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects, a fundamental aspect of socio-cognitive neuroscience. It is an interdisciplinary field spanning computer science, electrical engineering, psychology, and cognitive science. Physiological Computing is a category of technology in which electrophysiological data recorded directly from human activity are used to interface with a computing device. This technology becomes even more relevant when computing can be integrated pervasively in everyday life environments. Thus, Socio-Cognitive and Affective Computing systems should be able to adapt their behavior according to the Physiological Computing paradigm. This book integrates proposals from researchers who use signals from the brain and/or body to infer people's intentions and psychological state in smart computing systems. The design of this kind of systems combines knowledge and methods of ubiquitous and pervasive computing, as well as physiological data measurement and processing, with those of socio-cognitive and affective computing
    corecore