602 research outputs found

    Joint Geo-Spatial Preference and Pairwise Ranking for Point-of-Interest Recommendation

    Get PDF
    Recommending users with preferred point-of-interests (POIs) has become an important task for location-based social networks, which facilitates users' urban exploration by helping them filter out unattractive locations. Although the influence of geographical neighborhood has been studied in the rating prediction task (i.e. regression), few work have exploited it to develop a ranking-oriented objective function to improve top-N item recommendations. To solve this task, we conduct a manual inspection on real-world datasets, and find that each individual's traits are likely to cluster around multiple centers. Hence, we propose a co-pairwise ranking model based on the assumption that users prefer to assign higher ranks to the POIs near previously rated ones. The proposed method can learn preference ordering from non-observed rating pairs, and thus can alleviate the sparsity problem of matrix factorization. Evaluation on two publicly available datasets shows that our method performs significantly better than state-of-the-art techniques for the top-N item recommendation task

    CoSoLoRec: Joint factor model with content, social, location for heterogeneous point-of-interest recommendation

    Full text link
    © Springer International Publishing AG 2016. The pervasive use of Location-based Social Networks calls for more precise Point-of-Interest recommendation. The probability of a user’s visit to a target place is influenced by multiple factors. Though there are several fusion models in such fields, heterogeneous information are not considered comprehensively. To this end, we propose a novel probabilistic latent factor model by jointly considering the social correlation, geographical influence and users’ preference. To be specific, a variant of Latent Dirichlet Allocation is leveraged to extract the topics of both user and POI from reviews which is denoted as explicit interest. Then, Probabilistic Latent Factor Model is introduced to depict the implicit interest. Moreover, Kernel Density Estimation and friend-based Collaborative Filtering are leveraged to model user’s geographic allocation and social correlation respectively. Thus, we propose CoSoLoRec, a fusion framework, to ameliorate the recommendation. Experiments on two real-word datasets show the superiority of our approach over the state-of-the-art methods

    Context-Aware Personalized Point-of-Interest Recommendation System

    Get PDF
    The increasing volume of information has created overwhelming challenges to extract the relevant items manually. Fortunately, the online systems, such as e-commerce (e.g., Amazon), location-based social networks (LBSNs) (e.g., Facebook) among many others have the ability to track end users\u27 browsing and consumption experiences. Such explicit experiences (e.g., ratings) and many implicit contexts (e.g., social, spatial, temporal, and categorical) are useful in preference elicitation and recommendation. As an emerging branch of information filtering, the recommendation systems are already popular in many domains, such as movies (e.g., YouTube), music (e.g., Pandora), and Point-of-Interest (POI) (e.g., Yelp). The POI domain has many contextual challenges (e.g., spatial (preferences to a near place), social (e.g., friend\u27s influence), temporal (e.g., popularity at certain time), categorical (similar preferences to places with same category), locality of POI, etc.) that can be crucial for an efficient recommendation. The user reviews shared across different social networks provide granularity in users\u27 consumption experience. From the data mining and machine learning perspective, following three research directions are identified and considered relevant to an efficient context-aware POI recommendation, (1) incorporation of major contexts into a single model and a detailed analysis of the impact of those contexts, (2) exploitation of user activity and location influence to model hierarchical preferences, and (3) exploitation of user reviews to formulate the aspect opinion relation and to generate explanation for recommendation. This dissertation presents different machine learning and data mining-based solutions to address the above-mentioned research problems, including, (1) recommendation models inspired from contextualized ranking and matrix factorization that incorporate the major contexts and help in analysis of their importance, (2) hierarchical and matrix-factorization models that formulate users\u27 activity and POI influences on different localities that model hierarchical preferences and generate individual and sequence recommendations, and (3) graphical models inspired from natural language processing and neural networks to generate recommendations augmented with aspect-based explanations

    Joint Geographical and Temporal Modeling based on Matrix Factorization for Point-of-Interest Recommendation

    Full text link
    With the popularity of Location-based Social Networks, Point-of-Interest (POI) recommendation has become an important task, which learns the users' preferences and mobility patterns to recommend POIs. Previous studies show that incorporating contextual information such as geographical and temporal influences is necessary to improve POI recommendation by addressing the data sparsity problem. However, existing methods model the geographical influence based on the physical distance between POIs and users, while ignoring the temporal characteristics of such geographical influences. In this paper, we perform a study on the user mobility patterns where we find out that users' check-ins happen around several centers depending on their current temporal state. Next, we propose a spatio-temporal activity-centers algorithm to model users' behavior more accurately. Finally, we demonstrate the effectiveness of our proposed contextual model by incorporating it into the matrix factorization model under two different settings: i) static and ii) temporal. To show the effectiveness of our proposed method, which we refer to as STACP, we conduct experiments on two well-known real-world datasets acquired from Gowalla and Foursquare LBSNs. Experimental results show that the STACP model achieves a statistically significant performance improvement, compared to the state-of-the-art techniques. Also, we demonstrate the effectiveness of capturing geographical and temporal information for modeling users' activity centers and the importance of modeling them jointly.Comment: To be appear in ECIR 202
    • …
    corecore