95,183 research outputs found

    An original model for multi-target learning of logical rules for knowledge graph reasoning

    Full text link
    Large-scale knowledge graphs provide structured representations of human knowledge. However, as it is impossible to collect all knowledge, knowledge graphs are usually incomplete. Reasoning based on existing facts paves a way to discover missing facts. In this paper, we study the problem of learning logical rules for reasoning on knowledge graphs for completing missing factual triplets. Learning logical rules equips a model with strong interpretability as well as the ability to generalize to similar tasks. We propose a model able to fully use training data which also considers multi-target scenarios. In addition, considering the deficiency in evaluating the performance of models and the quality of mined rules, we further propose two novel indicators to help with the problem. Experimental results empirically demonstrate that our model outperforms state-of-the-art methods on five benchmark datasets. The results also prove the effectiveness of the indicators

    Super edge-magic deficiency of join-product graphs

    Full text link
    A graph GG is called \textit{super edge-magic} if there exists a bijective function ff from V(G)E(G)V(G) \cup E(G) to {1,2,,V(G)E(G)}\{1, 2, \ldots, |V(G) \cup E(G)|\} such that f(V(G))={1,2,,V(G)}f(V(G)) = \{1, 2, \ldots, |V(G)|\} and f(x)+f(xy)+f(y)f(x) + f(xy) + f(y) is a constant kk for every edge xyxy of GG. Furthermore, the \textit{super edge-magic deficiency} of a graph GG is either the minimum nonnegative integer nn such that GnK1G \cup nK_1 is super edge-magic or ++\infty if there exists no such integer. \emph{Join product} of two graphs is their graph union with additional edges that connect all vertices of the first graph to each vertex of the second graph. In this paper, we study the super edge-magic deficiencies of a wheel minus an edge and join products of a path, a star, and a cycle, respectively, with isolated vertices.Comment: 11 page

    Node Balanced Steady States: Unifying and Generalizing Complex and Detailed Balanced Steady States

    Full text link
    We introduce a unifying and generalizing framework for complex and detailed balanced steady states in chemical reaction network theory. To this end, we generalize the graph commonly used to represent a reaction network. Specifically, we introduce a graph, called a reaction graph, that has one edge for each reaction but potentially multiple nodes for each complex. A special class of steady states, called node balanced steady states, is naturally associated with such a reaction graph. We show that complex and detailed balanced steady states are special cases of node balanced steady states by choosing appropriate reaction graphs. Further, we show that node balanced steady states have properties analogous to complex balanced steady states, such as uniqueness and asymptotical stability in each stoichiometric compatibility class. Moreover, we associate an integer, called the deficiency, to a reaction graph that gives the number of independent relations in the reaction rate constants that need to be satisfied for a positive node balanced steady state to exist. The set of reaction graphs (modulo isomorphism) is equipped with a partial order that has the complex balanced reaction graph as minimal element. We relate this order to the deficiency and to the set of reaction rate constants for which a positive node balanced steady state exists

    Two-Source Dispersers for Polylogarithmic Entropy and Improved Ramsey Graphs

    Full text link
    In his 1947 paper that inaugurated the probabilistic method, Erd\H{o}s proved the existence of 2logn2\log{n}-Ramsey graphs on nn vertices. Matching Erd\H{o}s' result with a constructive proof is a central problem in combinatorics, that has gained a significant attention in the literature. The state of the art result was obtained in the celebrated paper by Barak, Rao, Shaltiel and Wigderson [Ann. Math'12], who constructed a 22(loglogn)1α2^{2^{(\log\log{n})^{1-\alpha}}}-Ramsey graph, for some small universal constant α>0\alpha > 0. In this work, we significantly improve the result of Barak~\etal and construct 2(loglogn)c2^{(\log\log{n})^c}-Ramsey graphs, for some universal constant cc. In the language of theoretical computer science, our work resolves the problem of explicitly constructing two-source dispersers for polylogarithmic entropy

    Spectral Theory of Infinite Quantum Graphs

    Get PDF
    We investigate quantum graphs with infinitely many vertices and edges without the common restriction on the geometry of the underlying metric graph that there is a positive lower bound on the lengths of its edges. Our central result is a close connection between spectral properties of a quantum graph and the corresponding properties of a certain weighted discrete Laplacian on the underlying discrete graph. Using this connection together with spectral theory of (unbounded) discrete Laplacians on infinite graphs, we prove a number of new results on spectral properties of quantum graphs. Namely, we prove several self-adjointness results including a Gaffney type theorem. We investigate the problem of lower semiboundedness, prove several spectral estimates (bounds for the bottom of spectra and essential spectra of quantum graphs, CLR-type estimates) and study spectral types.Comment: Dedicated to the memory of M. Z. Solomyak (16.05.1931 - 31.07.2016

    Analysis of unbounded operators and random motion

    Full text link
    We study infinite weighted graphs with view to \textquotedblleft limits at infinity,\textquotedblright or boundaries at infinity. Examples of such weighted graphs arise in infinite (in practice, that means \textquotedblleft very\textquotedblright large) networks of resistors, or in statistical mechanics models for classical or quantum systems. But more generally our analysis includes reproducing kernel Hilbert spaces and associated operators on them. If XX is some infinite set of vertices or nodes, in applications the essential ingredient going into the definition is a reproducing kernel Hilbert space; it measures the differences of functions on XX evaluated on pairs of points in XX. And the Hilbert norm-squared in H(X)\mathcal{H}(X) will represent a suitable measure of energy. Associated unbounded operators will define a notion or dissipation, it can be a graph Laplacian, or a more abstract unbounded Hermitian operator defined from the reproducing kernel Hilbert space under study. We prove that there are two closed subspaces in reproducing kernel Hilbert space H(X)\mathcal{H}(X) which measure quantitative notions of limits at infinity in XX, one generalizes finite-energy harmonic functions in H(X)\mathcal{H}(X), and the other a deficiency index of a natural operator in H(X)\mathcal{H}(X) associated directly with the diffusion. We establish these results in the abstract, and we offer examples and applications. Our results are related to, but different from, potential theoretic notions of \textquotedblleft boundaries\textquotedblright in more standard random walk models. Comparisons are made.Comment: 38 pages, 4 tables, 3 figure

    A Novel Biostimulant, Belonging to Protein Hydrolysates, Mitigates Abiotic Stress Effects on Maize Seedlings Grown in Hydroponics

    Get PDF
    The main challenge to agriculture worldwide is feeding a rapidly growing human population, developing more sustainable agricultural practices that do not threaten human and ecosystem health. An innovative solution relies on the use of biostimulants, as a tool to enhance nutrient use ef\ufb01ciency and crop performances under sub-optimal conditions. In this work a novel biostimulant(APR\uae,ILSAS.p.A.,ArziganoVI,Italy), belongingtothegroupofproteinhydrolysates, wassuppliedtomaizeseedlingsinhydroponicanditseffectswereassessedincontrolconditionsand in the presence of three different kinds of stresses (hypoxia, salt and nutrient de\ufb01ciency) and of their combination. OurresultsindicatethatAPR\uae issolubleandisabletoin\ufb02uencerootandshootgrowth depending on its concentration. Furthermore, its effectiveness is clearly increased in condition of single or combination of abiotic stresses, thus con\ufb01rming the previously hypothesised action of this substance as enhancer of the response to environmental adversities. Moreover, it also regulates the transcription of a set of genes involved in nitrate transport and ROS metabolism. Further work will be needed to try to transfer this basic knowledge in \ufb01eld experiments
    corecore