3,558 research outputs found

    Random Beamforming with Heterogeneous Users and Selective Feedback: Individual Sum Rate and Individual Scaling Laws

    Full text link
    This paper investigates three open problems in random beamforming based communication systems: the scheduling policy with heterogeneous users, the closed form sum rate, and the randomness of multiuser diversity with selective feedback. By employing the cumulative distribution function based scheduling policy, we guarantee fairness among users as well as obtain multiuser diversity gain in the heterogeneous scenario. Under this scheduling framework, the individual sum rate, namely the average rate for a given user multiplied by the number of users, is of interest and analyzed under different feedback schemes. Firstly, under the full feedback scheme, we derive the closed form individual sum rate by employing a decomposition of the probability density function of the selected user's signal-to-interference-plus-noise ratio. This technique is employed to further obtain a closed form rate approximation with selective feedback in the spatial dimension. The analysis is also extended to random beamforming in a wideband OFDMA system with additional selective feedback in the spectral dimension wherein only the best beams for the best-L resource blocks are fed back. We utilize extreme value theory to examine the randomness of multiuser diversity incurred by selective feedback. Finally, by leveraging the tail equivalence method, the multiplicative effect of selective feedback and random observations is observed to establish the individual rate scaling.Comment: Submitted in March 2012. To appear in IEEE Transactions on Wireless Communications. Part of this paper builds upon the following letter: Y. Huang and B. D. Rao, "Closed form sum rate of random beamforming", IEEE Commun. Lett., vol. 16, no. 5, pp. 630-633, May 201

    A selective cluster index scheduling method in OFDMA

    Get PDF

    Broadband MC DS-CDMA Using Space-Time and Frequency-Domain Spreading

    No full text
    In this contribution multicarrier direct-sequence code-division multiple-access (MC DS-CDMA) using space-time spreading (STS) assisted transmit diversity and frequency-domain (F-domain) spreading is investigated in the context of broadband communications over frequency-selective Rayleigh fading channels. We consider the attainable capacity extension of broadband MC DS-CDMA with the advent of using Time-Frequency-domain (TF-domain) spreading. The BER performance of STS assisted broadband MC DS-CDMA using Binary Phase Shit Keying (BPSK) modulation and TF-domain spreading is investigated by simulation for a range of parameter values. Both the correlation based single-user detector and the decorrelating multiuser detector are considered. Our study shows that the number of users supported by the broadband MC DS-CDMA system is determined by the product of the T-domain spreading factor and the F-domain spreading factor, while it is independent of the frequency diversity order. Furthermore, when multiuser detection assisted F-domain spreading is considered, the broadband MC DS-CDMA system is capable of supporting a substantially increased number of users, while maintaining a similar bit error ratio (BER) performance to that of the broadband MC DS-CDMA system using no F-domain spreading

    Reducing feedback requirements of the multiple weight opportunistic beamforming scheme via selective multiuser diversity

    Get PDF

    A joint-channel diagonalization for multiuser MIMO antenna systems

    Get PDF
    In this paper, we address the problem of improving the performance of multiuser space-division multiplexing (SDM) systems where multiple independent signal streams can be transmitted in the same frequency and time slot. The problem is important in multiuser multiple-input multiple-output systems where communication from one base station to many mobile stations can occur simultaneously. Our objective is to devise a multiuser linear space-time precoder for simultaneous channel diagonalization of the multiuser channels enabling SDM. Our new approach is based on diagonalizing the multiuser channel matrices and we use a variation of successive Jacobi rotations. In addition to the diagonalization, our approach attempts to optimize the resultant channel gains for performance enhancement. Our method is valid for both frequency-flat and frequency-selective fading channels but we assume that the base station knows all the channels and that they are quasi-stationary

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER
    • …
    corecore