25 research outputs found

    Robust synchronization for 2-D discrete-time coupled dynamical networks

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, a new synchronization problem is addressed for an array of 2-D coupled dynamical networks. The class of systems under investigation is described by the 2-D nonlinear state space model which is oriented from the well-known Fornasini–Marchesini second model. For such a new 2-D complex network model, both the network dynamics and the couplings evolve in two independent directions. A new synchronization concept is put forward to account for the phenomenon that the propagations of all 2-D dynamical networks are synchronized in two directions with influence from the coupling strength. The purpose of the problem addressed is to first derive sufficient conditions ensuring the global synchronization and then extend the obtained results to more general cases where the system matrices contain either the norm-bounded or the polytopic parameter uncertainties. An energy-like quadratic function is developed, together with the intensive use of the Kronecker product, to establish the easy-to-verify conditions under which the addressed 2-D complex network model achieves global synchronization. Finally, a numerical example is given to illustrate the theoretical results and the effectiveness of the proposed synchronization scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008 and 61174136, the International Science and Technology Cooperation Project of China under Grant No. 2009DFA32050, the Natural Science Foundation of Jiangsu Province of China under Grant BK2011598, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Convolutional Neural Networks as 2-D systems

    Full text link
    This paper introduces a novel representation of convolutional Neural Networks (CNNs) in terms of 2-D dynamical systems. To this end, the usual description of convolutional layers with convolution kernels, i.e., the impulse responses of linear filters, is realized in state space as a linear time-invariant 2-D system. The overall convolutional Neural Network composed of convolutional layers and nonlinear activation functions is then viewed as a 2-D version of a Lur'e system, i.e., a linear dynamical system interconnected with static nonlinear components. One benefit of this 2-D Lur'e system perspective on CNNs is that we can use robust control theory much more efficiently for Lipschitz constant estimation than previously possible

    A new approach to applying discrete sliding mode control to 2D systems

    Full text link
    Sliding mode control has been applied previously to a specific form of 2D systems (Roesser model). In this paper a new approach (ID vectorial form) is introduced for this problem. Using ID form to represent 2D systems can be used as an alternative strategy to reduce the inherent complexity of 2D systems and their applications. Unlike Wave Advanced Model (WAM) form (proposed by Porter and Aravena), the suggested ID vectorial form, in this paper, has invariable dimension and consequently can be converted to regular form for sliding mode control (SMC). In this paper, the first Fornasini and Marchesini (FM) model of 2D systems which is a second order recursive form is considered. Meantime, the suggested method can be simply deployed to other first or second order 2D models. ©2013 IEEE

    Stability and Robust Stability of 2D Discrete Stochastic Systems

    Get PDF
    New stability and robust stability results are given based on weaker conservative assumptions. First, new boundary condition is designed. It is less conservative and has broader application range than that has been given. Then, we derive the results which have the same form, but under a weaker conservative assumption. Meanwhile, the process of the proofs has been simplified. Finally, an example is given to illustrate our results. Our results can be extended to the fields of stabilization, filtering and state estimation, and so forth
    corecore