61 research outputs found

    Dual Meta-Learning with Longitudinally Generalized Regularization for One-Shot Brain Tissue Segmentation Across the Human Lifespan

    Full text link
    Brain tissue segmentation is essential for neuroscience and clinical studies. However, segmentation on longitudinal data is challenging due to dynamic brain changes across the lifespan. Previous researches mainly focus on self-supervision with regularizations and will lose longitudinal generalization when fine-tuning on a specific age group. In this paper, we propose a dual meta-learning paradigm to learn longitudinally consistent representations and persist when fine-tuning. Specifically, we learn a plug-and-play feature extractor to extract longitudinal-consistent anatomical representations by meta-feature learning and a well-initialized task head for fine-tuning by meta-initialization learning. Besides, two class-aware regularizations are proposed to encourage longitudinal consistency. Experimental results on the iSeg2019 and ADNI datasets demonstrate the effectiveness of our method. Our code is available at https://github.com/ladderlab-xjtu/DuMeta.Comment: ICCV 202

    Bilevel optimization, deep learning and fractional Laplacian regularization with applications in tomography

    Get PDF
    The article of record as published may be located at https://doi.org/10.1088/1361-6420/ab80d7Funded by Naval Postgraduate SchoolIn this work we consider a generalized bilevel optimization framework for solv- ing inverse problems. We introduce fractional Laplacian as a regularizer to improve the reconstruction quality, and compare it with the total variation regularization. We emphasize that the key advantage of using fractional Laplacian as a regularizer is that it leads to a linear operator, as opposed to the total varia- tion regularization which results in a nonlinear degenerate operator. Inspired by residual neural networks, to learn the optimal strength of regularization and the exponent of fractional Laplacian, we develop a dedicated bilevel opti- mization neural network with a variable depth for a general regularized inverse problem. We illustrate how to incorporate various regularizer choices into our proposed network. As an example, we consider tomographic reconstruction as a model problem and show an improvement in reconstruction quality, especially for limited data, via fractional Laplacian regularization. We successfully learn the regularization strength and the fractional exponent via our proposed bilevel optimization neural network. We observe that the fractional Laplacian regular- ization outperforms total variation regularization. This is specially encouraging, and important, in the case of limited and noisy data.The first and third authors are partially supported by NSF grants DMS-1818772, DMS-1913004, the Air Force Office of Scientific Research under Award No.: FA9550-19-1-0036, and the Department of Navy, Naval PostGraduate School under Award No.: N00244-20-1-0005. The third author is also partially supported by a Provost award at George Mason University under the Industrial Immersion Program. The second author is partially supported by DOE Office of Science under Contract No. DE-AC02-06CH11357.The first and third authors are partially supported by NSF grants DMS-1818772, DMS-1913004, the Air Force Office of Scientific Research under Award No.: FA9550-19-1-0036, and the Department of Navy, Naval PostGraduate School under Award No.: N00244-20-1-0005. The third author is also partially supported by a Provost award at George Mason University under the Industrial Immersion Program. The second author is partially supported by DOE Office of Science under Contract No. DE-AC02-06CH11357

    Bilevel Training Schemes in Imaging for Total Variation--Type Functionals with Convex Integrands

    Get PDF
    In the context of image processing, given a kk-th order, homogeneous and linear differential operator with constant coefficients, we study a class of variational problems whose regularizing terms depend on the operator. Precisely, the regularizers are integrals of spatially inhomogeneous integrands with convex dependence on the differential operator applied to the image function. The setting is made rigorous by means of the theory of Radon measures and of suitable function spaces modeled on BVBV. We prove the lower semicontinuity of the functionals at stake and existence of minimizers for the corresponding variational problems. Then, we embed the latter into a bilevel scheme in order to automatically compute the space-dependent regularization parameters, thus allowing for good flexibility and preservation of details in the reconstructed image. We establish existence of optima for the scheme and we finally substantiate its feasibility by numerical examples in image denoising. The cases that we treat are Huber versions of the first and second order total variation with both the Huber and the regularization parameter being spatially dependent. Notably the spatially dependent version of second order total variation produces high quality reconstructions when compared to regularizations of similar type, and the introduction of the spatially dependent Huber parameter leads to a further enhancement of the image details.Comment: 27 pages, 6 figure

    Direct stellarator coil optimization for nested magnetic surfaces with precise quasisymmetry

    Full text link
    We present a robust optimization algorithm for the design of electromagnetic coils that generate vacuum magnetic fields with nested flux surfaces and precise quasisymmetry. The method is based on a bilevel optimization problem, where the outer coil optimization is constrained by a set of inner least-squares optimization problems whose solutions describe magnetic surfaces. The outer optimization objective targets coils that generate a field with nested magnetic surfaces and good quasisymmetry. The inner optimization problems identify magnetic surfaces when they exist, and approximate surfaces in the presence of magnetic islands or chaos. We show that this formulation can be used to heal islands and chaos, thus producing coils that result in magnetic fields with precise quasisymmetry. We show that the method can be initialized with coils from the traditional two stage coil design process, as well as coils from a near axis expansion optimization. We present a numerical example where island chains are healed and quasisymmetry is optimized up to surfaces with aspect ratio 6. Another numerical example illustrates that the aspect ratio of nested flux surfaces with optimized quasisymmetry can be decreased from 6 to approximately 4. The last example shows that our approach is robust and a cold-start using coils from a near-axis expansion optimization

    Entropic regularization approach for mathematical programs with equilibrium constraints

    Get PDF
    A new smoothing approach based on entropic perturbation is proposed for solving mathematical programs with equilibrium constraints. Some of the desirable properties of the smoothing function are shown. The viability of the proposed approach is supported by a computational study on a set of well-known test problems.Entropic regularization;Smoothing approach;Mathematical programs with equilibrium constraints

    Squeeze, Recover and Relabel: Dataset Condensation at ImageNet Scale From A New Perspective

    Full text link
    We present a new dataset condensation framework termed Squeeze, Recover and Relabel (SRe2^2L) that decouples the bilevel optimization of model and synthetic data during training, to handle varying scales of datasets, model architectures and image resolutions for effective dataset condensation. The proposed method demonstrates flexibility across diverse dataset scales and exhibits multiple advantages in terms of arbitrary resolutions of synthesized images, low training cost and memory consumption with high-resolution training, and the ability to scale up to arbitrary evaluation network architectures. Extensive experiments are conducted on Tiny-ImageNet and full ImageNet-1K datasets. Under 50 IPC, our approach achieves the highest 42.5% and 60.8% validation accuracy on Tiny-ImageNet and ImageNet-1K, outperforming all previous state-of-the-art methods by margins of 14.5% and 32.9%, respectively. Our approach also outperforms MTT by approximately 52×\times (ConvNet-4) and 16×\times (ResNet-18) faster in speed with less memory consumption of 11.6×\times and 6.4×\times during data synthesis. Our code and condensed datasets of 50, 200 IPC with 4K recovery budget are available at https://zeyuanyin.github.io/projects/SRe2L/.Comment: Technical repor
    • …
    corecore