780 research outputs found

    Trellis phase codes for power-bandwith efficient satellite communications

    Get PDF
    Support work on improved power and spectrum utilization on digital satellite channels was performed. Specific attention is given to the class of signalling schemes known as continuous phase modulation (CPM). The specific work described in this report addresses: analytical bounds on error probability for multi-h phase codes, power and bandwidth characterization of 4-ary multi-h codes, and initial results of channel simulation to assess the impact of band limiting filters and nonlinear amplifiers on CPM performance

    Combined trellis coding with asymmetric MPSK modulation: An MSAT-X report

    Get PDF
    Traditionally symmetric, multiple phase-shift-keyed (MPSK) signal constellations, i.e., those with uniformly spaced signal points around the circle, have been used for both uncoded and coded systems. Although symmetric MPSK signal constellations are optimum for systems with no coding, the same is not necessarily true for coded systems. This appears to show that by designing the signal constellations to be asymmetric, one can, in many instances, obtain a significant performance improvement over the traditional symmetric MPSK constellations combined with trellis coding. The joint design of n/(n + 1) trellis codes and asymmetric 2 sup n + 1 - point MPSK is considered, which has a unity bandwidth expansion relative to uncoded 2 sup n-point symmetric MPSK. The asymptotic performance gains due to coding and asymmetry are evaluated in terms of the minimum free Euclidean distance free of the trellis. A comparison of the maximum value of this performance measure with the minimum distance d sub min of the uncoded system is an indication of the maximum reduction in required E sub b/N sub O that can be achieved for arbitrarily small system bit-error rates. It is to be emphasized that the introduction of asymmetry into the signal set does not effect the bandwidth of power requirements of the system; hence, the above-mentioned improvements in performance come at little or no cost. MPSK signal sets in coded systems appear in the work of Divsalar

    Convolutional Codes in Rank Metric with Application to Random Network Coding

    Full text link
    Random network coding recently attracts attention as a technique to disseminate information in a network. This paper considers a non-coherent multi-shot network, where the unknown and time-variant network is used several times. In order to create dependencies between the different shots, particular convolutional codes in rank metric are used. These codes are so-called (partial) unit memory ((P)UM) codes, i.e., convolutional codes with memory one. First, distance measures for convolutional codes in rank metric are shown and two constructions of (P)UM codes in rank metric based on the generator matrices of maximum rank distance codes are presented. Second, an efficient error-erasure decoding algorithm for these codes is presented. Its guaranteed decoding radius is derived and its complexity is bounded. Finally, it is shown how to apply these codes for error correction in random linear and affine network coding.Comment: presented in part at Netcod 2012, submitted to IEEE Transactions on Information Theor

    Near-Capacity Turbo Trellis Coded Modulation Design

    No full text
    Bandwidth efficient parallel-concatenated Turbo Trellis Coded Modulation (TTCM) schemes were designed for communicating over uncorrelated Rayleigh fading channels. A symbol-based union bound was derived for analysing the error floor of the proposed TTCM schemes. A pair of In-phase (I) and Quadrature-phase (Q) interleavers were employed for interleaving the I and Q components of the TTCM coded symbols, in order to attain an increased diversity gain. The decoding convergence of the IQ-TTCM schemes was analysed using symbol based EXtrinsic Information Transfer (EXIT) charts. The best TTCM component codes were selected with the aid of both the symbol-based union bound and non-binary EXIT charts for the sake of designing capacity-approaching IQ-TTCM schemes in the context of 8PSK, 16QAM and 32QAM signal sets. It will be shown that our TTCM design is capable of approaching the channel capacity within 0.5 dB at a throughput of 4 bit/s/Hz, when communicating over uncorrelated Rayleigh fading channels using 32QAM

    Multiple Trellis Coded Modulation (MTCM): An MSAT-X report

    Get PDF
    Conventional trellis coding outputs one channel symbol per trellis branch. The notion of multiple trellis coding is introduced wherein more than one channel symbol per trellis branch is transmitted. It is shown that the combination of multiple trellis coding with M-ary modulation yields a performance gain with symmetric signal set comparable to that previously achieved only with signal constellation asymmetry. The advantage of multiple trellis coding over the conventional trellis coded asymmetric modulation technique is that the potential for code catastrophe associated with the latter has been eliminated with no additional cost in complexity (as measured by the number of states in the trellis diagram)

    On BICM receivers for TCM transmission

    Get PDF
    Recent results have shown that the performance of bit-interleaved coded modulation (BICM) using convolutional codes in nonfading channels can be significantly improved when the interleaver takes a trivial form (BICM-T), i.e., when it does not interleave the bits at all. In this paper, we give a formal explanation for these results and show that BICM-T is in fact the combination of a TCM transmitter and a BICM receiver. To predict the performance of BICM-T, a new type of distance spectrum for convolutional codes is introduced, analytical bounds based on this spectrum are developed, and asymptotic approximations are also presented. It is shown that the minimum distance of the code is not the relevant optimization criterion for BICM-T. Optimal convolutional codes for different constrain lengths are tabulated and asymptotic gains of about 2 dB are obtained. These gains are found to be the same as those obtained by Ungerboeck's one-dimensional trellis coded modulation (1D-TCM), and therefore, in nonfading channels, BICM-T is shown to be asymptotically as good as 1D-TCM.Comment: Submitted to the IEEE Transactions on Communication

    Multi-stage decoding for multi-level block modulation codes

    Get PDF
    Various types of multistage decoding for multilevel block modulation codes, in which the decoding of a component code at each stage can be either soft decision or hard decision, maximum likelihood or bounded distance are discussed. Error performance for codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. It was found that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. It was found that the difference in performance between the suboptimum multi-stage soft decision maximum likelihood decoding of a modulation code and the single stage optimum decoding of the overall code is very small, only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity

    Coding theorems for turbo code ensembles

    Get PDF
    This paper is devoted to a Shannon-theoretic study of turbo codes. We prove that ensembles of parallel and serial turbo codes are "good" in the following sense. For a turbo code ensemble defined by a fixed set of component codes (subject only to mild necessary restrictions), there exists a positive number γ0 such that for any binary-input memoryless channel whose Bhattacharyya noise parameter is less than γ0, the average maximum-likelihood (ML) decoder block error probability approaches zero, at least as fast as n -β, where β is the "interleaver gain" exponent defined by Benedetto et al. in 1996
    corecore