601 research outputs found

    Non-Convex Multi-species Hopfield models

    Full text link
    In this work we introduce a multi-species generalization of the Hopfield model for associative memory, where neurons are divided into groups and both inter-groups and intra-groups pair-wise interactions are considered, with different intensities. Thus, this system contains two of the main ingredients of modern Deep neural network architectures: Hebbian interactions to store patterns of information and multiple layers coding different levels of correlations. The model is completely solvable in the low-load regime with a suitable generalization of the Hamilton-Jacobi technique, despite the Hamiltonian can be a non-definite quadratic form of the magnetizations. The family of multi-species Hopfield model includes, as special cases, the 3-layers Restricted Boltzmann Machine (RBM) with Gaussian hidden layer and the Bidirectional Associative Memory (BAM) model.Comment: This is a pre-print of an article published in J. Stat. Phy

    Long Sequence Hopfield Memory

    Full text link
    Sequence memory is an essential attribute of natural and artificial intelligence that enables agents to encode, store, and retrieve complex sequences of stimuli and actions. Computational models of sequence memory have been proposed where recurrent Hopfield-like neural networks are trained with temporally asymmetric Hebbian rules. However, these networks suffer from limited sequence capacity (maximal length of the stored sequence) due to interference between the memories. Inspired by recent work on Dense Associative Memories, we expand the sequence capacity of these models by introducing a nonlinear interaction term, enhancing separation between the patterns. We derive novel scaling laws for sequence capacity with respect to network size, significantly outperforming existing scaling laws for models based on traditional Hopfield networks, and verify these theoretical results with numerical simulation. Moreover, we introduce a generalized pseudoinverse rule to recall sequences of highly correlated patterns. Finally, we extend this model to store sequences with variable timing between states' transitions and describe a biologically-plausible implementation, with connections to motor neuroscience.Comment: NeurIPS 2023 Camera-Ready, 41 page

    Free energies of Boltzmann Machines: self-averaging, annealed and replica symmetric approximations in the thermodynamic limit

    Full text link
    Restricted Boltzmann machines (RBMs) constitute one of the main models for machine statistical inference and they are widely employed in Artificial Intelligence as powerful tools for (deep) learning. However, in contrast with countless remarkable practical successes, their mathematical formalization has been largely elusive: from a statistical-mechanics perspective these systems display the same (random) Gibbs measure of bi-partite spin-glasses, whose rigorous treatment is notoriously difficult. In this work, beyond providing a brief review on RBMs from both the learning and the retrieval perspectives, we aim to contribute to their analytical investigation, by considering two distinct realizations of their weights (i.e., Boolean and Gaussian) and studying the properties of their related free energies. More precisely, focusing on a RBM characterized by digital couplings, we first extend the Pastur-Shcherbina-Tirozzi method (originally developed for the Hopfield model) to prove the self-averaging property for the free energy, over its quenched expectation, in the infinite volume limit, then we explicitly calculate its simplest approximation, namely its annealed bound. Next, focusing on a RBM characterized by analogical weights, we extend Guerra's interpolating scheme to obtain a control of the quenched free-energy under the assumption of replica symmetry: we get self-consistencies for the order parameters (in full agreement with the existing Literature) as well as the critical line for ergodicity breaking that turns out to be the same obtained in AGS theory. As we discuss, this analogy stems from the slow-noise universality. Finally, glancing beyond replica symmetry, we analyze the fluctuations of the overlaps for an estimate of the (slow) noise affecting the retrieval of the signal, and by a stability analysis we recover the Aizenman-Contucci identities typical of glassy systems.Comment: 21 pages, 1 figur

    Optimisation in ‘Self-modelling’ Complex Adaptive Systems

    No full text
    When a dynamical system with multiple point attractors is released from an arbitrary initial condition it will relax into a configuration that locally resolves the constraints or opposing forces between interdependent state variables. However, when there are many conflicting interdependencies between variables, finding a configuration that globally optimises these constraints by this method is unlikely, or may take many attempts. Here we show that a simple distributed mechanism can incrementally alter a dynamical system such that it finds lower energy configurations, more reliably and more quickly. Specifically, when Hebbian learning is applied to the connections of a simple dynamical system undergoing repeated relaxation, the system will develop an associative memory that amplifies a subset of its own attractor states. This modifies the dynamics of the system such that its ability to find configurations that minimise total system energy, and globally resolve conflicts between interdependent variables, is enhanced. Moreover, we show that the system is not merely ‘recalling’ low energy states that have been previously visited but ‘predicting’ their location by generalising over local attractor states that have already been visited. This ‘self-modelling’ framework, i.e. a system that augments its behaviour with an associative memory of its own attractors, helps us better-understand the conditions under which a simple locally-mediated mechanism of self-organisation can promote significantly enhanced global resolution of conflicts between the components of a complex adaptive system. We illustrate this process in random and modular network constraint problems equivalent to graph colouring and distributed task allocation problems

    Attractors in fully asymmetric neural networks

    Full text link
    The statistical properties of the length of the cycles and of the weights of the attraction basins in fully asymmetric neural networks (i.e. with completely uncorrelated synapses) are computed in the framework of the annealed approximation which we previously introduced for the study of Kauffman networks. Our results show that this model behaves essentially as a Random Map possessing a reversal symmetry. Comparison with numerical results suggests that the approximation could become exact in the infinite size limit.Comment: 23 pages, 6 figures, Latex, to appear on J. Phys.

    An associative network with spatially organized connectivity

    Full text link
    We investigate the properties of an autoassociative network of threshold-linear units whose synaptic connectivity is spatially structured and asymmetric. Since the methods of equilibrium statistical mechanics cannot be applied to such a network due to the lack of a Hamiltonian, we approach the problem through a signal-to-noise analysis, that we adapt to spatially organized networks. The conditions are analyzed for the appearance of stable, spatially non-uniform profiles of activity with large overlaps with one of the stored patterns. It is also shown, with simulations and analytic results, that the storage capacity does not decrease much when the connectivity of the network becomes short range. In addition, the method used here enables us to calculate exactly the storage capacity of a randomly connected network with arbitrary degree of dilution.Comment: 27 pages, 6 figures; Accepted for publication in JSTA
    • …
    corecore