1,013 research outputs found

    Sparse and spurious: dictionary learning with noise and outliers

    Get PDF
    A popular approach within the signal processing and machine learning communities consists in modelling signals as sparse linear combinations of atoms selected from a learned dictionary. While this paradigm has led to numerous empirical successes in various fields ranging from image to audio processing, there have only been a few theoretical arguments supporting these evidences. In particular, sparse coding, or sparse dictionary learning, relies on a non-convex procedure whose local minima have not been fully analyzed yet. In this paper, we consider a probabilistic model of sparse signals, and show that, with high probability, sparse coding admits a local minimum around the reference dictionary generating the signals. Our study takes into account the case of over-complete dictionaries, noisy signals, and possible outliers, thus extending previous work limited to noiseless settings and/or under-complete dictionaries. The analysis we conduct is non-asymptotic and makes it possible to understand how the key quantities of the problem, such as the coherence or the level of noise, can scale with respect to the dimension of the signals, the number of atoms, the sparsity and the number of observations.Comment: This is a substantially revised version of a first draft that appeared as a preprint titled "Local stability and robustness of sparse dictionary learning in the presence of noise", http://hal.inria.fr/hal-00737152, IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers (IEEE), 2015, pp.2

    Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization

    Full text link
    We consider the problem of sparse coding, where each sample consists of a sparse linear combination of a set of dictionary atoms, and the task is to learn both the dictionary elements and the mixing coefficients. Alternating minimization is a popular heuristic for sparse coding, where the dictionary and the coefficients are estimated in alternate steps, keeping the other fixed. Typically, the coefficients are estimated via â„“1\ell_1 minimization, keeping the dictionary fixed, and the dictionary is estimated through least squares, keeping the coefficients fixed. In this paper, we establish local linear convergence for this variant of alternating minimization and establish that the basin of attraction for the global optimum (corresponding to the true dictionary and the coefficients) is \order{1/s^2}, where ss is the sparsity level in each sample and the dictionary satisfies RIP. Combined with the recent results of approximate dictionary estimation, this yields provable guarantees for exact recovery of both the dictionary elements and the coefficients, when the dictionary elements are incoherent.Comment: Local linear convergence now holds under RIP and also more general restricted eigenvalue condition

    Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise

    Get PDF
    We address the problem of adaptive detection of a signal of interest embedded in colored noise modeled in terms of a compound-Gaussian process. The covariance matrices of the primary and the secondary data share a common structure while having different power levels. A Bayesian approach is proposed here, where both the power levels and the structure are assumed to be random, with some appropriate distributions. Within this framework we propose MMSE and MAP estimators of the covariance structure and their application to adaptive detection using the NMF test statistic and an optimized GLRT herein derived. Some results, also conducted in comparison with existing algorithms, are presented to illustrate the performances of the proposed algorithms. The relevant result is that the solutions presented herein allows to improve the performance over conventional ones, especially in presence of a small number of training data
    • …
    corecore