33,936 research outputs found

    Fast sampling control of a class of differential linear repetitive processes

    Get PDF
    Repetitive processes are a distinct class of 2D linear systems of practical and theoretical interest. Most of the available control theory for them is for the case of linear dynamics and focuses on systems theoretic properties such as stability and controllability/observability. This paper uses an extension of standard, or 1D, feedback control schemes to control a physically relevant sub-class of these processes

    Control and Filtering for Discrete Linear Repetitive Processes with H infty and ell 2--ell infty Performance

    No full text
    Repetitive processes are characterized by a series of sweeps, termed passes, through a set of dynamics defined over a finite duration known as the pass length. On each pass an output, termed the pass profile, is produced which acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile. This can lead to oscillations which increase in amplitude in the pass to pass direction and cannot be controlled by standard control laws. Here we give new results on the design of physically based control laws for the sub-class of so-called discrete linear repetitive processes which arise in applications areas such as iterative learning control. The main contribution is to show how control law design can be undertaken within the framework of a general robust filtering problem with guaranteed levels of performance. In particular, we develop algorithms for the design of an H? and 2\ell_{2}–\ell_{\infty} dynamic output feedback controller and filter which guarantees that the resulting controlled (filtering error) process, respectively, is stable along the pass and has prescribed disturbance attenuation performance as measured by HH_{\infty} and 2\ell_{2}\ell_{\infty} norms

    A Behavioral Approach to the Control of Discrete Linear Repetitive Processes

    No full text
    This paper formulates the theory of linear discrete time repetitive processes in the setting of behavioral systems theory. A behavioral, latent variable model for repetitive processes is developed and for the physically defined inputs and outputs as manifest variables, a kernel representation of their behavior is determined. Conditions for external stability and controllability of the behavior are then obtained. A sufficient condition for stabilizability is also developed for the behavior and it is shown under a mild restriction that, whenever the repetitive system is stabilizable, a regular constant output feedback stabilizing controller exists. Next a notion of eigenvalues is defined for the repetitive process under an action of a closed loop controller. It is then shown how under controllability of the original repetitive process, an arbitrary assignment of eigenvalues for the closed loop response can be achieved by a constant gain output feedback controller under the above restriction. These results on the existence of constant gain output feedback controllers are among the most striking properties enjoyed by repetitive systems, discovered in this paper. Results of this paper utilize the behavioral model of the repetitive process which is an analogue of the 1D equivalent model of the dynamics studied in earlier work on repetitive processes

    PI output feedback control of differential linear repetitive processes

    No full text
    Repetitive processes are characterized by a series of sweeps, termed passes, through a set of dynamics defined over a finite duration known as the pass length. On each pass an output, termed the pass profile, is produced which acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile. This can lead to oscillations which increase in amplitude in the pass-to-pass direction and cannot be controlled by standard control laws. Here we give new results on the design of physically based control laws. These are for the sub-class of so-called differential linear repetitive processes which arise in applications areas such as iterative learning control. They show how a form of proportional-integral (PI) control based only on process outputs can be designed to give stability plus performance and disturbance rejection

    A 2D systems approach to iterative learning control for discrete linear processes with zero Markov parameters

    No full text
    In this paper a new approach to iterative learning control for the practically relevant case of deterministic discrete linear plants with uniform rank greater than unity is developed. The analysis is undertaken in a 2D systems setting that, by using a strong form of stability for linear repetitive processes, allows simultaneous con-sideration of both trial-to-trial error convergence and along the trial performance, resulting in design algorithms that can be computed using Linear Matrix Inequalities (LMIs). Finally, the control laws are experimentally verified on a gantry robot that replicates a pick and place operation commonly found in a number of applications to which iterative learning control is applicable

    LMI based Stability and Stabilization of Second-order Linear Repetitive Processes

    No full text
    This paper develops new results on the stability and control of a class of linear repetitive processes described by a second-order matrix discrete or differential equation. These are developed by transformation of the secondorder dynamics to those of an equivalent first-order descriptor state-space model, thus avoiding the need to invert a possibly ill-conditioned leading coefficient matrix in the original model

    Optimal control of wave linear repetitive processes

    No full text
    This paper gives new results on optimal control of the so-called wave discrete linear repetitive processes which find novel application in the modelling of physical examples. These processes have dynamics which are not restricted to the upper right quadrant of the 2D plane and hence the current control results for repetitive processes or 2D systems are not applicabl

    <i>H</i><sub>2</sub> and mixed <i>H</i><sub>2</sub>/<i>H</i><sub>∞</sub> Stabilization and Disturbance Attenuation for Differential Linear Repetitive Processes

    Get PDF
    Repetitive processes are a distinct class of two-dimensional systems (i.e., information propagation in two independent directions) of both systems theoretic and applications interest. A systems theory for them cannot be obtained by direct extension of existing techniques from standard (termed 1-D here) or, in many cases, two-dimensional (2-D) systems theory. Here, we give new results towards the development of such a theory in H2 and mixed H2/H∞ settings. These results are for the sub-class of so-called differential linear repetitive processes and focus on the fundamental problems of stabilization and disturbance attenuation

    On the Development of SCILAB Compatible Software for the Analysis and Control of Repetitive Processes

    No full text
    In this paper further results on the development of a SCILAB compatible software package for the analysis and control of repetitive processes is described. The core of the package consists of a simulation tool which enables the user to inspect the response of a given example to an input, design a control law for stability and/or performance, and also simulate the response of a controlled process to a specified reference signal
    corecore