5,386 research outputs found

    Further Results on Geometric Properties of a Family of Relative Entropies

    Full text link
    This paper extends some geometric properties of a one-parameter family of relative entropies. These arise as redundancies when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the Kullback-Leibler divergence. They satisfy the Pythagorean property and behave like squared distances. This property, which was known for finite alphabet spaces, is now extended for general measure spaces. Existence of projections onto convex and certain closed sets is also established. Our results may have applications in the R\'enyi entropy maximization rule of statistical physics.Comment: 7 pages, Prop. 5 modified, in Proceedings of the 2011 IEEE International Symposium on Information Theor

    Use of the geometric mean as a statistic for the scale of the coupled Gaussian distributions

    Full text link
    The geometric mean is shown to be an appropriate statistic for the scale of a heavy-tailed coupled Gaussian distribution or equivalently the Student's t distribution. The coupled Gaussian is a member of a family of distributions parameterized by the nonlinear statistical coupling which is the reciprocal of the degree of freedom and is proportional to fluctuations in the inverse scale of the Gaussian. Existing estimators of the scale of the coupled Gaussian have relied on estimates of the full distribution, and they suffer from problems related to outliers in heavy-tailed distributions. In this paper, the scale of a coupled Gaussian is proven to be equal to the product of the generalized mean and the square root of the coupling. From our numerical computations of the scales of coupled Gaussians using the generalized mean of random samples, it is indicated that only samples from a Cauchy distribution (with coupling parameter one) form an unbiased estimate with diminishing variance for large samples. Nevertheless, we also prove that the scale is a function of the geometric mean, the coupling term and a harmonic number. Numerical experiments show that this estimator is unbiased with diminishing variance for large samples for a broad range of coupling values.Comment: 17 pages, 5 figure

    A Pedagogical Intrinsic Approach to Relative Entropies as Potential Functions of Quantum Metrics: the qq-zz Family

    Get PDF
    The so-called qq-z-\textit{R\'enyi Relative Entropies} provide a huge two-parameter family of relative entropies which includes almost all well-known examples of quantum relative entropies for suitable values of the parameters. In this paper we consider a log-regularized version of this family and use it as a family of potential functions to generate covariant (0,2)(0,2) symmetric tensors on the space of invertible quantum states in finite dimensions. The geometric formalism developed here allows us to obtain the explicit expressions of such tensor fields in terms of a basis of globally defined differential forms on a suitable unfolding space without the need to introduce a specific set of coordinates. To make the reader acquainted with the intrinsic formalism introduced, we first perform the computation for the qubit case, and then, we extend the computation of the metric-like tensors to a generic nn-level system. By suitably varying the parameters qq and zz, we are able to recover well-known examples of quantum metric tensors that, in our treatment, appear written in terms of globally defined geometrical objects that do not depend on the coordinates system used. In particular, we obtain a coordinate-free expression for the von Neumann-Umegaki metric, for the Bures metric and for the Wigner-Yanase metric in the arbitrary nn-level case.Comment: 50 pages, 1 figur

    Entropy: The Markov Ordering Approach

    Full text link
    The focus of this article is on entropy and Markov processes. We study the properties of functionals which are invariant with respect to monotonic transformations and analyze two invariant "additivity" properties: (i) existence of a monotonic transformation which makes the functional additive with respect to the joining of independent systems and (ii) existence of a monotonic transformation which makes the functional additive with respect to the partitioning of the space of states. All Lyapunov functionals for Markov chains which have properties (i) and (ii) are derived. We describe the most general ordering of the distribution space, with respect to which all continuous-time Markov processes are monotonic (the {\em Markov order}). The solution differs significantly from the ordering given by the inequality of entropy growth. For inference, this approach results in a convex compact set of conditionally "most random" distributions.Comment: 50 pages, 4 figures, Postprint version. More detailed discussion of the various entropy additivity properties and separation of variables for independent subsystems in MaxEnt problem is added in Section 4.2. Bibliography is extende

    Universal quantum computation with little entanglement

    Full text link
    We show that universal quantum computation can be achieved in the standard pure-state circuit model while, at any time, the entanglement entropy of all bipartitions is small---even tending to zero with growing system size. The result is obtained by showing that a quantum computer operating within a small region around the set of unentangled states still has universal computational power, and by using continuity of entanglement entropy. In fact an analogous conclusion applies to every entanglement measure which is continuous in a certain natural sense, which amounts to a large class. Other examples include the geometric measure, localizable entanglement, smooth epsilon-measures, multipartite concurrence, squashed entanglement, and several others. We discuss implications of these results for the believed role of entanglement as a key necessary resource for quantum speed-ups

    Holographic Entanglement Entropy

    Full text link
    We review the developments in the past decade on holographic entanglement entropy, a subject that has garnered much attention owing to its potential to teach us about the emergence of spacetime in holography. We provide an introduction to the concept of entanglement entropy in quantum field theories, review the holographic proposals for computing the same, providing some justification for where these proposals arise from in the first two parts. The final part addresses recent developments linking entanglement and geometry. We provide an overview of the various arguments and technical developments that teach us how to use field theory entanglement to detect geometry. Our discussion is by design eclectic; we have chosen to focus on developments that appear to us most promising for further insights into the holographic map. This is a draft of a few chapters of a book which will appear sometime in the near future, to be published by Springer. The book in addition contains a discussion of application of holographic ideas to computation of entanglement entropy in strongly coupled field theories, and discussion of tensor networks and holography, which we have chosen to exclude from the current manuscript.Comment: 154 pages. many figures. preliminary version of book chapters. comments welcome. v2: typos fixed and references adde

    Entropies from coarse-graining: convex polytopes vs. ellipsoids

    Full text link
    We examine the Boltzmann/Gibbs/Shannon SBGS\mathcal{S}_{BGS} and the non-additive Havrda-Charv\'{a}t / Dar\'{o}czy/Cressie-Read/Tsallis \ Sq\mathcal{S}_q \ and the Kaniadakis κ\kappa-entropy \ Sκ\mathcal{S}_\kappa \ from the viewpoint of coarse-graining, symplectic capacities and convexity. We argue that the functional form of such entropies can be ascribed to a discordance in phase-space coarse-graining between two generally different approaches: the Euclidean/Riemannian metric one that reflects independence and picks cubes as the fundamental cells and the symplectic/canonical one that picks spheres/ellipsoids for this role. Our discussion is motivated by and confined to the behaviour of Hamiltonian systems of many degrees of freedom. We see that Dvoretzky's theorem provides asymptotic estimates for the minimal dimension beyond which these two approaches are close to each other. We state and speculate about the role that dualities may play in this viewpoint.Comment: 63 pages. No figures. Standard LaTe
    corecore