24,352 research outputs found

    Strict General Setting for Building Decision Procedures into Theorem Provers

    Get PDF
    The efficient and flexible incorporating of decision procedures into theorem provers is very important for their successful use. There are several approaches for combining and augmenting of decision procedures; some of them support handling uninterpreted functions, congruence closure, lemma invoking etc. In this paper we present a variant of one general setting for building decision procedures into theorem provers (gs framework [18]). That setting is based on macro inference rules motivated by techniques used in different approaches. The general setting enables a simple describing of different combination/augmentation schemes. In this paper, we further develop and extend this setting by an imposed ordering on the macro inference rules. That ordering leads to a ”strict setting”. It makes implementing and using variants of well-known or new schemes within this framework a very easy task even for a non-expert user. Also, this setting enables easy comparison of different combination/augmentation schemes and combination of their ideas

    Termination of Rewriting with and Automated Synthesis of Forbidden Patterns

    Full text link
    We introduce a modified version of the well-known dependency pair framework that is suitable for the termination analysis of rewriting under forbidden pattern restrictions. By attaching contexts to dependency pairs that represent the calling contexts of the corresponding recursive function calls, it is possible to incorporate the forbidden pattern restrictions in the (adapted) notion of dependency pair chains, thus yielding a sound and complete approach to termination analysis. Building upon this contextual dependency pair framework we introduce a dependency pair processor that simplifies problems by analyzing the contextual information of the dependency pairs. Moreover, we show how this processor can be used to synthesize forbidden patterns suitable for a given term rewriting system on-the-fly during the termination analysis.Comment: In Proceedings IWS 2010, arXiv:1012.533

    A General Setting for Flexibly Combining and Augmenting Decision Procedures

    Get PDF

    Graph-Controlled Insertion-Deletion Systems

    Full text link
    In this article, we consider the operations of insertion and deletion working in a graph-controlled manner. We show that like in the case of context-free productions, the computational power is strictly increased when using a control graph: computational completeness can be obtained by systems with insertion or deletion rules involving at most two symbols in a contextual or in a context-free manner and with the control graph having only four nodes.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Two Algebraic Process Semantics for Contextual Nets

    No full text
    We show that the so-called 'Petri nets are monoids' approach initiated by Meseguer and Montanari can be extended from ordinary place/transition Petri nets to contextual nets by considering suitable non-free monoids of places. The algebraic characterizations of net concurrent computations we provide cover both the collective and the individual token philosophy, uniformly along the two interpretations, and coincide with the classical proposals for place/transition Petri nets in the absence of read-arcs
    • 

    corecore