5,358 research outputs found

    Enhancing learning through self-explanation

    Get PDF
    Self-explanation is an effective teaching/learning strategy that has been used in several intelligent tutoring systems in the domains of Mathematics and Physics to facilitate deep learning. Since all these domains are well structured, the instructional material to self-explain can be clearly defined. We are interested in investigating whether self-explanation can be used in an open-ended domain. For this purpose, we enhanced KERMIT, an intelligent tutoring system that teaches conceptual database design. The resulting system, KERMIT-SE, supports self-explanation by engaging students in tutorial dialogues when their solutions are erroneous. We plan to conduct an evaluation in July 2002, to test the hypothesis that students will learn better with KERMIT-SE than without self-explanation

    OFMTutor: An operator function model intelligent tutoring system

    Get PDF
    The design, implementation, and evaluation of an Operator Function Model intelligent tutoring system (OFMTutor) is presented. OFMTutor is intended to provide intelligent tutoring in the context of complex dynamic systems for which an operator function model (OFM) can be constructed. The human operator's role in such complex, dynamic, and highly automated systems is that of a supervisory controller whose primary responsibilities are routine monitoring and fine-tuning of system parameters and occasional compensation for system abnormalities. The automated systems must support the human operator. One potentially useful form of support is the use of intelligent tutoring systems to teach the operator about the system and how to function within that system. Previous research on intelligent tutoring systems (ITS) is considered. The proposed design for OFMTutor is presented, and an experimental evaluation is described

    Designing web-based adaptive learning environment : distils as an example

    Get PDF
    In this study, two components are developed for the Web-based adaptive learning: an online Intelligent Tutoring Tool (ITT) and an Adaptive Lecture Guidance (ALG). The ITT provides students timely problem-solving help in a dynamic Web environment. The ALG prevents students from being disoriented when a new domain is presented using Web technology. A prototype, Distributed Intelligent Learning System (DISTILS), has been implemented in a general chemistry laboratory domain. In DISTILS, students interact with the ITT through a Web browser. When a student selects a problem, the problem is formatted and displayed in the user interface for the student to solve. On the other side, the ITT begins to solve the problem simultaneously. The student can then request help from the ITT through the interface. The ITT interacts with the student, verifying those solution activities in an ascending order of the student knowledge status. In DISTILS, a Web page is associated with a HTML Learning Model (HLM) to describe its knowledge content. The ALG extracts the HLM, collects the status of students\u27 knowledge in HLM, and presents a knowledge map illustrating where the student is, how much proficiency he/she already has and where he/she is encouraged to explore. In this way, the ALG helps students to navigate the Web-based course material, protecting them from being disoriented and giving them guidance in need. Both the ITT and ALG components are developed under a generic Common Object Request Broker Architecture (CORBA)-driven framework. Under this framework, knowledge objects model domain expertise, a student modeler assesses student\u27s knowledge progress, an instruction engine includes two tutoring components, such as the ITT and the ALG, and the CORBA-compatible middleware serves as the communication infrastructure. The advantage of such a framework is that it promotes the development of modular and reusable intelligent educational objects. In DISTILS, a collection of knowledge objects were developed under CORBA to model general chemistry laboratory domain expertise. It was shown that these objects can be easily assembled in a plug-and-play manner to produce several exercises for different laboratory experiments. Given the platform independence of CORBA, tutoring objects developed under such a framework have the potential to be easily reused in different applications. Preliminary results showed that DISTILS effectively enhanced learning in Web environment. Three high school students and twenty-two NJIT students participated in the evaluation of DISTILS. In the final quiz of seven questions, the average correct answers of the students who studied in a Web environment with DISTILS (DISTILS Group) was 5.3, and the average correct answers of those who studied in the same Web environment without DISTILS (NoDISTILS Group) was 2.75. A t-test conducted on this small sample showed that the DISTILS group students significantly scored better than the NoDISTILS group students

    Proceedings of the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology

    Get PDF
    The volume 2 proceedings from the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology are presented. Topics discussed include intelligent computer assisted training (ICAT) systems architectures, ICAT educational and medical applications, virtual environment (VE) training and assessment, human factors engineering and VE, ICAT theory and natural language processing, ICAT military applications, VE engineering applications, ICAT knowledge acquisition processes and applications, and ICAT aerospace applications

    Making intelligent systems team players: Overview for designers

    Get PDF
    This report is a guide and companion to the NASA Technical Memorandum 104738, 'Making Intelligent Systems Team Players,' Volumes 1 and 2. The first two volumes of this Technical Memorandum provide comprehensive guidance to designers of intelligent systems for real-time fault management of space systems, with the objective of achieving more effective human interaction. This report provides an analysis of the material discussed in the Technical Memorandum. It clarifies what it means for an intelligent system to be a team player, and how such systems are designed. It identifies significant intelligent system design problems and their impacts on reliability and usability. Where common design practice is not effective in solving these problems, we make recommendations for these situations. In this report, we summarize the main points in the Technical Memorandum and identify where to look for further information

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future

    A meta-analysis of the effectiveness of intelligent tutoring systems on college students' academic learning

    Get PDF
    © 2013 American Psychological Association.This meta-analysis synthesizes research on the effectiveness of intelligent tutoring systems (ITS) for college students. Thirty-five reports were found containing 39 studies assessing the effectiveness of 22 types of ITS in higher education settings. Most frequently studied were AutoTutor, Assessment and Learning in Knowledge Spaces, eXtended Tutor-Expert System, and Web Interface for Statistics Education. Major findings include (a) Overall, ITS had a moderate positive effect on college students' academic learning (g = .32 to g = .37); (b) ITS were less effective than human tutoring, but they outperformed all other instruction methods and learning activities, including traditional classroom instruction, reading printed text or computerized materials, computer-assisted instruction, laboratory or homework assignments, and no-treatment control; (c) ITS's effectiveness did not significantly differ by different ITS, subject domain, or the manner or degree of their involvement in instruction and learning; and (d) effectiveness in earlier studies appeared to be significantly greater than that in more recent studies. In addition, there is some evidence suggesting the importance of teachers and pedagogy in ITS-assisted learning
    corecore