23,099 research outputs found

    Tuning and Switching a Plasmonic Quantum Dot Sandwich in a Nematic Line Defect

    Full text link
    We study the quantum-mechanical effects arising in a single semiconductor core/shell quantum dot controllably sandwiched between two plasmonic nanorods. Control over the position and the sandwich confinement structure is achieved by the use of a linear-trap, liquid-crystal line defect and laser tweezers that push the sandwich together. This arrangement allows for the study of exciton plasmon interactions in a single structure, unaltered by ensemble effects or the complexity of dielectric interfaces. We demonstrate the effect of plasmonic confinement on the photon-antibunching behavior of the quantum dot and its luminescence lifetime. The quantum dot behaves as a single emitter when nanorods are far away from the quantum dot but shows possible multiexciton emission and a significantly decreased lifetime when tightly confined in a plasmonic sandwich. These findings demonstrate that liquid crystal defects, combined with laser tweezers, enable a versatile platform to study plasmonic coupling phenomena in a nanoscale laboratory, where all elements can be arranged almost at will.Comment: Supporting information at the en

    Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities

    Full text link
    Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.Comment: to appear in the IEEE Transactions on Cognitive Communications and Networking (TCCN

    On Robustness in the Gap Metric and Coprime Factor Uncertainty for LTV Systems

    Full text link
    In this paper, we study the problem of robust stabilization for linear time-varying (LTV) systems subject to time-varying normalized coprime factor uncertainty. Operator theoretic results which generalize similar results known to hold for linear time-invariant (infinite-dimensional) systems are developed. In particular, we compute an upper bound for the maximal achievable stability margin under TV normalized coprime factor uncertainty in terms of the norm of an operator with a time-varying Hankel structure. We point to a necessary and sufficient condition which guarantees compactness of the TV Hankel operator, and in which case singular values and vectors can be used to compute the time-varying stability margin and TV controller. A connection between robust stabilization for LTV systems and an Operator Corona Theorem is also pointed out.Comment: 20 page

    Stabilization of Networked Control Systems with Sparse Observer-Controller Networks

    Full text link
    In this paper we provide a set of stability conditions for linear time-invariant networked control systems with arbitrary topology, using a Lyapunov direct approach. We then use these stability conditions to provide a novel low-complexity algorithm for the design of a sparse observer-based control network. We employ distributed observers by employing the output of other nodes to improve the stability of each observer dynamics. To avoid unbounded growth of controller and observer gains, we impose bounds on their norms. The effects of relaxation of these bounds is discussed when trying to find the complete decentralization conditions
    • …
    corecore