1,761 research outputs found

    A SURVEY ON PRIVACY PRESERVING TECHNIQUES FOR SOCIAL NETWORK DATA

    Get PDF
    In this era of 20th century, online social network like Facebook, twitter, etc. plays a very important role in everyone's life. Social network data, regarding any individual organization can be published online at any time, in which there is a risk of information leakage of anyone's personal data. So preserving the privacy of individual organizations and companies are needed before data is published online. Therefore the research was carried out in this area for many years and it is still going on. There have been various existing techniques that provide the solutions for preserving privacy to tabular data called as relational data and also social network data represented in graphs. Different techniques exists for tabular data but you can't apply directly to the structured complex graph  data,which consists of vertices represented as individuals and edges representing some kind of connection or relationship between the nodes. Various techniques like K-anonymity, L-diversity, and T-closeness exist to provide privacy to nodes and techniques like edge perturbation, edge randomization are there to provide privacy to edges in social graphs. Development of new techniques by  Integration to exiting techniques like K-anonymity ,edge perturbation, edge randomization, L-Diversity are still going on to provide more privacy to relational data and social network data are ongoingin the best possible manner.Â

    Avoiding disclosure of individually identifiable health information: a literature review

    Get PDF
    Achieving data and information dissemination without arming anyone is a central task of any entity in charge of collecting data. In this article, the authors examine the literature on data and statistical confidentiality. Rather than comparing the theoretical properties of specific methods, they emphasize the main themes that emerge from the ongoing discussion among scientists regarding how best to achieve the appropriate balance between data protection, data utility, and data dissemination. They cover the literature on de-identification and reidentification methods with emphasis on health care data. The authors also discuss the benefits and limitations for the most common access methods. Although there is abundant theoretical and empirical research, their review reveals lack of consensus on fundamental questions for empirical practice: How to assess disclosure risk, how to choose among disclosure methods, how to assess reidentification risk, and how to measure utility loss.public use files, disclosure avoidance, reidentification, de-identification, data utility

    A New Method for Protecting Interrelated Time Series with Bayesian Prior Distributions and Synthetic Data

    Get PDF
    Organizations disseminate statistical summaries of administrative data via the Web for unrestricted public use. They balance the trade-off between confidentiality protection and inference quality. Recent developments in disclosure avoidance techniques include the incorporation of synthetic data, which capture the essential features of underlying data by releasing altered data generated from a posterior predictive distribution. The United States Census Bureau collects millions of interrelated time series micro-data that are hierarchical and contain many zeros and suppressions. Rule-based disclosure avoidance techniques often require the suppression of count data for small magnitudes and the modification of data based on a small number of entities. Motivated by this problem, we use zero-inflated extensions of Bayesian Generalized Linear Mixed Models (BGLMM) with privacy-preserving prior distributions to develop methods for protecting and releasing synthetic data from time series about thousands of small groups of entities without suppression based on the of magnitudes or number of entities. We find that as the prior distributions of the variance components in the BGLMM become more precise toward zero, confidentiality protection increases and inference quality deteriorates. We evaluate our methodology using a strict privacy measure, empirical differential privacy, and a newly defined risk measure, Probability of Range Identification (PoRI), which directly measures attribute disclosure risk. We illustrate our results with the U.S. Census Bureau’s Quarterly Workforce Indicators

    A systematic overview on methods to protect sensitive data provided for various analyses

    Get PDF
    In view of the various methodological developments regarding the protection of sensitive data, especially with respect to privacy-preserving computation and federated learning, a conceptual categorization and comparison between various methods stemming from different fields is often desired. More concretely, it is important to provide guidance for the practice, which lacks an overview over suitable approaches for certain scenarios, whether it is differential privacy for interactive queries, k-anonymity methods and synthetic data generation for data publishing, or secure federated analysis for multiparty computation without sharing the data itself. Here, we provide an overview based on central criteria describing a context for privacy-preserving data handling, which allows informed decisions in view of the many alternatives. Besides guiding the practice, this categorization of concepts and methods is destined as a step towards a comprehensive ontology for anonymization. We emphasize throughout the paper that there is no panacea and that context matters

    Optimization Methods for Tabular Data Protection

    Get PDF
    In this thesis we consider a minimum distance Controlled Tabular Adjustment (CTA) model for statistical disclosure limitation (control) of tabular data. The goal of the CTA model is to find the closest safe table to some original tabular data set that contains sensitive information. The measure of closeness is usually measured using l1 or l2 norm; with each measure having its advantages and disadvantages. According to the given norm CTA can be formulated as an optimization problem: Liner Programing (LP) for l1, Quadratic Programing (QP) for l2. In this thesis we present an alternative reformulation of l1-CTA as Second-Order Cone (SOC) optimization problems. All three models can be solved using appropriate versions of Interior-Point Methods (IPM). The validity of the new approach was tested on the randomly generated two-dimensional tabular data sets. It was shown numerically, that SOC formulation compares favorably to QP and LP formulations

    SoK: Realistic Adversarial Attacks and Defenses for Intelligent Network Intrusion Detection

    Full text link
    Machine Learning (ML) can be incredibly valuable to automate anomaly detection and cyber-attack classification, improving the way that Network Intrusion Detection (NID) is performed. However, despite the benefits of ML models, they are highly susceptible to adversarial cyber-attack examples specifically crafted to exploit them. A wide range of adversarial attacks have been created and researchers have worked on various defense strategies to safeguard ML models, but most were not intended for the specific constraints of a communication network and its communication protocols, so they may lead to unrealistic examples in the NID domain. This Systematization of Knowledge (SoK) consolidates and summarizes the state-of-the-art adversarial learning approaches that can generate realistic examples and could be used in real ML development and deployment scenarios with real network traffic flows. This SoK also describes the open challenges regarding the use of adversarial ML in the NID domain, defines the fundamental properties that are required for an adversarial example to be realistic, and provides guidelines for researchers to ensure that their future experiments are adequate for a real communication network.Comment: 31 pages, 3 tables, 6 figures, Computers and Security journa

    SoK: Realistic Adversarial Attacks and Defenses for Intelligent Network Intrusion Detection

    Get PDF
    Machine Learning (ML) can be incredibly valuable to automate anomaly detection and cyber-attack classification, improving the way that Network Intrusion Detection (NID) is performed. However, despite the benefits of ML models, they are highly susceptible to adversarial cyber-attack examples specifically crafted to exploit them. A wide range of adversarial attacks have been created and researchers have worked on various defense strategies to safeguard ML models, but most were not intended for the specific constraints of a communication network and its communication protocols, so they may lead to unrealistic examples in the NID domain. This Systematization of Knowledge (SoK) consolidates and summarizes the state-of-the-art adversarial learning approaches that can generate realistic examples and could be used in real ML development and deployment scenarios with real network traffic flows. This SoK also describes the open challenges regarding the use of adversarial ML in the NID domain, defines the fundamental properties that are required for an adversarial example to be realistic, and provides guidelines for researchers to ensure that their future experiments are adequate for a real communication network.The present work was partially supported by the Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), within project ”Cybers SeC IP” (NORTE-01-0145-FEDER000044). This work has also received funding from UIDB/00760/2020.info:eu-repo/semantics/acceptedVersio

    Recent Advances of Differential Privacy in Centralized Deep Learning: A Systematic Survey

    Full text link
    Differential Privacy has become a widely popular method for data protection in machine learning, especially since it allows formulating strict mathematical privacy guarantees. This survey provides an overview of the state-of-the-art of differentially private centralized deep learning, thorough analyses of recent advances and open problems, as well as a discussion of potential future developments in the field. Based on a systematic literature review, the following topics are addressed: auditing and evaluation methods for private models, improvements of privacy-utility trade-offs, protection against a broad range of threats and attacks, differentially private generative models, and emerging application domains.Comment: 35 pages, 2 figure
    • …
    corecore