718 research outputs found

    Local symmetry dynamics in one-dimensional aperiodic lattices

    Get PDF
    A unifying description of lattice potentials generated by aperiodic one-dimensional sequences is proposed in terms of their local reflection or parity symmetry properties. We demonstrate that the ranges and axes of local reflection symmetry possess characteristic distributional and dynamical properties which can be determined for every aperiodic binary lattice. A striking aspect of such a property is given by the return maps of sequential spacings of local symmetry axes, which typically traverse few-point symmetry orbits. This local symmetry dynamics allows for a classification of inherently different aperiodic lattices according to fundamental symmetry principles. Illustrating the local symmetry distributional and dynamical properties for several representative binary lattices, we further show that the renormalized axis spacing sequences follow precisely the particular type of underlying aperiodic order. Our analysis thus reveals that the long-range order of aperiodic lattices is characterized in a compellingly simple way by its local symmetry dynamics.Comment: 15 pages, 12 figure

    Saturated simplicial complexes

    Get PDF
    AbstractAmong shellable complexes a certain class has maximal modular homology, and these are the so-called saturated complexes. We extend the notion of saturation to arbitrary pure complexes and give a survey of their properties. It is shown that saturated complexes can be characterized via the p-rank of incidence matrices and via the structure of links. We show that rank-selected subcomplexes of saturated complexes are also saturated, and that order complexes of geometric lattices are saturated

    Combinatorial problems of (quasi-)crystallography

    Full text link
    Several combinatorial problems of (quasi-)crystallography are reviewed with special emphasis on a unified approach, valid for both crystals and quasicrystals. In particular, we consider planar sublattices, similarity sublattices, coincidence sublattices, their module counterparts, and central and averaged shelling. The corresponding counting functions are encapsulated in Dirichlet series generating functions, with explicit results for the triangular lattice and the twelvefold symmetric shield tiling. Other combinatorial properties are briefly summarised.Comment: 12 pages, 2 PostScript figures, LaTeX using vch-book.cl
    corecore