56,425 research outputs found

    Random Sampling in Computational Algebra: Helly Numbers and Violator Spaces

    Get PDF
    This paper transfers a randomized algorithm, originally used in geometric optimization, to computational problems in commutative algebra. We show that Clarkson's sampling algorithm can be applied to two problems in computational algebra: solving large-scale polynomial systems and finding small generating sets of graded ideals. The cornerstone of our work is showing that the theory of violator spaces of G\"artner et al.\ applies to polynomial ideal problems. To show this, one utilizes a Helly-type result for algebraic varieties. The resulting algorithms have expected runtime linear in the number of input polynomials, making the ideas interesting for handling systems with very large numbers of polynomials, but whose rank in the vector space of polynomials is small (e.g., when the number of variables and degree is constant).Comment: Minor edits, added two references; results unchange

    The monotonicity of f-vectors of random polytopes

    Get PDF
    Let K be a compact convex body in Rd, let Kn be the convex hull of n points chosen uniformly and independently in K, and let fi(Kn) denote the number of i-dimensional faces of Kn. We show that for planar convex sets, E(f0(Kn)) is increasing in n. In dimension d>=3 we prove that if lim(E((f[d -1](Kn))/(An^c)->1 when n->infinity for some constants A and c > 0 then the function E(f[d-1](Kn)) is increasing for n large enough. In particular, the number of facets of the convex hull of n random points distributed uniformly and independently in a smooth compact convex body is asymptotically increasing. Our proof relies on a random sampling argument

    Computation of Electromagnetic Fields Scattered From Objects With Uncertain Shapes Using Multilevel Monte Carlo Method

    Full text link
    Computational tools for characterizing electromagnetic scattering from objects with uncertain shapes are needed in various applications ranging from remote sensing at microwave frequencies to Raman spectroscopy at optical frequencies. Often, such computational tools use the Monte Carlo (MC) method to sample a parametric space describing geometric uncertainties. For each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver computes the scattered fields. However, for an accurate statistical characterization the number of MC samples has to be large. In this work, to address this challenge, the continuation multilevel Monte Carlo (CMLMC) method is used together with a surface integral equation solver. The CMLMC method optimally balances statistical errors due to sampling of the parametric space, and numerical errors due to the discretization of the geometry using a hierarchy of discretizations, from coarse to fine. The number of realizations of finer discretizations can be kept low, with most samples computed on coarser discretizations to minimize computational cost. Consequently, the total execution time is significantly reduced, in comparison to the standard MC scheme.Comment: 25 pages, 10 Figure
    corecore