13,942 research outputs found

    Optimizing olive disease classification through transfer learning with unmanned aerial vehicle imagery

    Get PDF
    Early detection of diseases in growing olive trees is essential for reducing costs and increasing productivity in this crucial economic activity. The quality and quantity of olive oil depend on the health of the fruit, making accurate and timely information on olive tree diseases critical to monitor growth and anticipate fruit output. The use of unmanned aerial vehicles (UAVs) and deep learning (DL) has made it possible to quickly monitor olive diseases over a large area indeed of limited sampling methods. Moreover, the limited number of research studies on olive disease detection has motivated us to enrich the literature with this work by introducing new disease classes and classification methods for this tree. In this study, we present a UAV system using convolutional neuronal network (CNN) and transfer learning (TL). We constructed an olive disease dataset of 14K images, processed and trained it with various CNN in addition to the proposed MobileNet-TL for improved classification and generalization. The simulation results confirm that this model allows for efficient diseases classification, with a precision accuracy achieving 99% in validation. In summary, TL has a positive impact on MobileNet architecture by improving its performance and reducing the training time for new tasks

    Volumetric Techniques for Product Routing and Loading Optimisation in Industry 4.0: A Review

    Get PDF
    Industry 4.0 has become a crucial part in the majority of processes, components, and related modelling, as well as predictive tools that allow a more efficient, automated and sustainable approach to industry. The availability of large quantities of data, and the advances in IoT, AI, and data-driven frameworks, have led to an enhanced data gathering, assessment, and extraction of actionable information, resulting in a better decision-making process. Product picking and its subsequent packing is an important area, and has drawn increasing attention for the research community. However, depending of the context, some of the related approaches tend to be either highly mathematical, or applied to a specific context. This article aims to provide a survey on the main methods, techniques, and frameworks relevant to product packing and to highlight the main properties and features that should be further investigated to ensure a more efficient and optimised approach

    GRASE: Granulometry Analysis with Semi Eager Classifier to Detect Malware

    Get PDF
    Technological advancement in communication leading to 5G, motivates everyone to get connected to the internet including ‘Devices’, a technology named Web of Things (WoT). The community benefits from this large-scale network which allows monitoring and controlling of physical devices. But many times, it costs the security as MALicious softWARE (MalWare) developers try to invade the network, as for them, these devices are like a ‘backdoor’ providing them easy ‘entry’. To stop invaders from entering the network, identifying malware and its variants is of great significance for cyberspace. Traditional methods of malware detection like static and dynamic ones, detect the malware but lack against new techniques used by malware developers like obfuscation, polymorphism and encryption. A machine learning approach to detect malware, where the classifier is trained with handcrafted features, is not potent against these techniques and asks for efforts to put in for the feature engineering. The paper proposes a malware classification using a visualization methodology wherein the disassembled malware code is transformed into grey images. It presents the efficacy of Granulometry texture analysis technique for improving malware classification. Furthermore, a Semi Eager (SemiE) classifier, which is a combination of eager learning and lazy learning technique, is used to get robust classification of malware families. The outcome of the experiment is promising since the proposed technique requires less training time to learn the semantics of higher-level malicious behaviours. Identifying the malware (testing phase) is also done faster. A benchmark database like malimg and Microsoft Malware Classification challenge (BIG-2015) has been utilized to analyse the performance of the system. An overall average classification accuracy of 99.03 and 99.11% is achieved, respectively

    Mobile Device Background Sensors: Authentication vs Privacy

    Get PDF
    The increasing number of mobile devices in recent years has caused the collection of a large amount of personal information that needs to be protected. To this aim, behavioural biometrics has become very popular. But, what is the discriminative power of mobile behavioural biometrics in real scenarios? With the success of Deep Learning (DL), architectures based on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), such as Long Short-Term Memory (LSTM), have shown improvements compared to traditional machine learning methods. However, these DL architectures still have limitations that need to be addressed. In response, new DL architectures like Transformers have emerged. The question is, can these new Transformers outperform previous biometric approaches? To answers to these questions, this thesis focuses on behavioural biometric authentication with data acquired from mobile background sensors (i.e., accelerometers and gyroscopes). In addition, to the best of our knowledge, this is the first thesis that explores and proposes novel behavioural biometric systems based on Transformers, achieving state-of-the-art results in gait, swipe, and keystroke biometrics. The adoption of biometrics requires a balance between security and privacy. Biometric modalities provide a unique and inherently personal approach for authentication. Nevertheless, biometrics also give rise to concerns regarding the invasion of personal privacy. According to the General Data Protection Regulation (GDPR) introduced by the European Union, personal data such as biometric data are sensitive and must be used and protected properly. This thesis analyses the impact of sensitive data in the performance of biometric systems and proposes a novel unsupervised privacy-preserving approach. The research conducted in this thesis makes significant contributions, including: i) a comprehensive review of the privacy vulnerabilities of mobile device sensors, covering metrics for quantifying privacy in relation to sensitive data, along with protection methods for safeguarding sensitive information; ii) an analysis of authentication systems for behavioural biometrics on mobile devices (i.e., gait, swipe, and keystroke), being the first thesis that explores the potential of Transformers for behavioural biometrics, introducing novel architectures that outperform the state of the art; and iii) a novel privacy-preserving approach for mobile biometric gait verification using unsupervised learning techniques, ensuring the protection of sensitive data during the verification process

    Radio frequency fingerprint identification for Internet of Things: A survey

    Get PDF
    Radio frequency fingerprint (RFF) identification is a promising technique for identifying Internet of Things (IoT) devices. This paper presents a comprehensive survey on RFF identification, which covers various aspects ranging from related definitions to details of each stage in the identification process, namely signal preprocessing, RFF feature extraction, further processing, and RFF identification. Specifically, three main steps of preprocessing are summarized, including carrier frequency offset estimation, noise elimination, and channel cancellation. Besides, three kinds of RFFs are categorized, comprising I/Q signal-based, parameter-based, and transformation-based features. Meanwhile, feature fusion and feature dimension reduction are elaborated as two main further processing methods. Furthermore, a novel framework is established from the perspective of closed set and open set problems, and the related state-of-the-art methodologies are investigated, including approaches based on traditional machine learning, deep learning, and generative models. Additionally, we highlight the challenges faced by RFF identification and point out future research trends in this field

    Model pruning enables localized and efficient federated learning for yield forecasting and data sharing

    Get PDF
    The work described here was funded by the EPSRC ‘Enhancing Agri-Food Transparent Sustainability’ (EATS) project, United Kingdom (grant number: EP/V042270/1) and by a University of Aberdeen Ph.D. studentship, United Kingdom. We also thank the University of Aberdeen’s HPC facility Maxwell. Open Access via the Elsevier AgreementPeer reviewedPublisher PD

    Agricultural development driven by the digital economy: improved EfficientNet vegetable quality grading

    Get PDF
    IntroductionThe conventional manual grading of vegetables poses challenges that necessitate innovative solutions. In this context, our paper proposes a deep learning methodology for vegetable quality grading.MethodsTo address the scarcity of vegetable datasets, we constructed a unique dataset comprising 3,600 images of diverse vegetables, including lettuce, broccoli, tomatoes, garlic, bitter melon, and Chinese cabbage. We present an improved CA-EfficientNet-CBAM model for vegetable quality grading. The CA module replaces the squeeze-and-excitation (SE) module in the MobileNet convolution (MBConv) structure of the EfficientNet model. Additionally, a channel and spatial attention module (CBAM) is integrated before the final layer, accelerating model training and emphasizing nuanced features.ResultsThe enhanced model, along with comparisons to VGGNet16, ResNet50, and DenseNet169, was subjected to ablation experiments. Our method achieved the highest classification accuracy of 95.12% on the cabbage vegetable image test set, outperforming VGGNet16, ResNet50, and DenseNet169 by 8.34%, 7%, and 4.29%, respectively. Notably, the proposed method effectively reduced the model’s parameter count.DiscussionOur experimental results highlight the effectiveness of the deep learning approach in improving vegetable quality grading accuracy. The superior performance of the enhanced EfficientNet model underscores its potential for advancing the field, achieving both high classification accuracy and parameter efficiency. We hope this aligns with your expectations. If there are further adjustments or clarifications needed, please let us know

    Breast cancer detection using ensemble of convolutional neural networks

    Get PDF
    Early detection leading to timely treatment in the initial stages of cancer may decrease the breast cancer death rate. We propose deep learning techniques along with image processing for the detection of tumors. The availability of online datasets and advances in graphical processing units (GPU) have promoted the application of deep learning models for the detection of breast cancer. In this paper, deep learning models using convolutional neural network (CNN) have been built to automatically classify mammograms into benign and malignant. Issues like overfitting and dataset imbalance are overcome. Experimentation has been done on two publicly available datasets, namely mammographic image analysis society (MIAS) database and digital database for screening mammography (DDSM). Robustness of the models is accomplished by merging the datasets. In our experimentation, MatConvNet has achieved an accuracy of 94.2% on the merged dataset, performing the best amongst all the CNN models used individually. Hungarian optimization algorithm is employed for selection of individual CNN models to form an ensemble. Ensemble of CNN models led to an improved performance, resulting in an accuracy of 95.7%

    Rapid dataset generation methods for stacked construction solid waste based on machine vision and deep learning.

    Get PDF
    The development of urbanization has brought convenience to people, but it has also brought a lot of harmful construction solid waste. The machine vision detection algorithm is the crucial technology for finely sorting solid waste, which is faster and more stable than traditional methods. However, accurate identification relies on large datasets, while the datasets from the field working conditions are scarce, and the manual annotation cost of datasets is high. To rapidly and automatically generate datasets for stacked construction waste, an acquisition and detection platform was built to automatically collect different groups of RGB-D images for instances labeling. Then, based on the distribution points generation theory and data augmentation algorithm, a rapid-generation method for synthetic construction solid waste datasets was proposed. Additionally, two automatic annotation methods for real stacked construction solid waste datasets based on semi-supervised self-training and RGB-D fusion edge detection were proposed, and datasets under real-world conditions yield better models training results. Finally, two different working conditions were designed to validate these methods. Under the simple working condition, the generated dataset achieved an F1-score of 95.98, higher than 94.81 for the manually labeled dataset. In the complicated working condition, the F1-score obtained by the rapid generation method reached 97.74. In contrast, the F1-score of the dataset obtained manually labeled was only 85.97, which demonstrates the effectiveness of proposed approaches

    Integrated Generative Adversarial Networks and Deep Convolutional Neural Networks for Image Data Classification A Case Study for COVID-19

    Get PDF
    Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of cutting-edge deep learning for precise image data classification, focusing on overcoming the difficulties brought on by the COVID-19 pandemic. In order to improve the accuracy and robustness of COVID-19 image classification, the study introduces a novel methodology that combines the strength of Deep Convolutional Neural Networks (DCNNs) and Generative Adversarial Networks (GANs). This proposed study helps to mitigate the lack of labelled coronavirus (COVID-19) images, which has been a standard limitation in related research, and improves the model’s ability to distinguish between COVID-19-related patterns and healthy lung images. The study uses a thorough case study and uses a sizable dataset of chest X-ray images covering COVID-19 cases, other respiratory conditions, and healthy lung conditions. The integrated model outperforms conventional DCNN-based techniques in terms of classification accuracy after being trained on this dataset. To address the issues of an unbalanced dataset, GAN will produce synthetic pictures and extract deep features from every image. A thorough understanding of the model’s performance in real-world scenarios is also provided by the study’s meticulous evaluation of the model’s performance using a variety of metrics, including accuracy, precision, recall, and F1-score
    • …
    corecore