74 research outputs found

    Evolution of RFID applications in construction:A literature review

    Get PDF
    Radio frequency identification (RFID) technology has been widely used in the field of construction during the last two decades. Basically, RFID facilitates the control on a wide variety of processes in different stages of the lifecycle of a building, from its conception to its inhabitance. The main objective of this paper is to present a review of RFID applications in the construction industry, pointing out the existing developments, limitations and gaps. The paper presents the establishment of the RFID technology in four main stages of the lifecycle of a facility: planning and design, construction and commission and operation and maintenance. Concerning this last stage, an RFID application aiming to facilitate the identification of pieces of furniture in scanned inhabited environments is presented. Conclusions and future advances are presented at the end of the paper

    Laser Scanning for BIM

    Get PDF

    3D GEOSPATIAL INDOOR NAVIGATION FOR DISASTER RISK REDUCTION AND RESPONSE IN URBAN ENVIRONMENT

    Get PDF
    Disaster management for urban environments with complex structures requires 3D extensions of indoor applications to support better risk reduction and response strategies. The paper highlights the need for assessment and explores the role of 3D geospatial information and modeling regarding the indoor structure and navigational routes which can be utilized as disaster risk reduction and response strategy. The reviewed models or methods are analysed testing parameters in the context of indoor risk and disaster management. These parameters are level of detail, connection to outdoor, spatial model and network, handling constraints. 3D reconstruction of indoors requires the structural data to be collected in a feasible manner with sufficient details. Defining the indoor space along with obstacles is important for navigation. Readily available technologies embedded in smartphones allow development of mobile applications for data collection, visualization and navigation enabling access by masses at low cost. The paper concludes with recommendations for 3D modeling, navigation and visualization of data using readily available smartphone technologies, drones as well as advanced robotics for Disaster Management

    Generating bridge geometric digital twins from point clouds

    Get PDF
    The automation of digital twinning for existing bridges from point clouds remains unsolved. Extensive manual effort is required to extract object point clusters from point clouds followed by fitting them with accurate 3D shapes. Previous research yielded methods that can automatically generate surface primitives combined with rule-based classification to create labelled cuboids and cylinders. While these methods work well in synthetic datasets or simplified cases, they encounter huge challenges when dealing with realworld point clouds. In addition, bridge geometries, defined with curved alignments and varying elevations, are much more complicated than idealized cases. None of the existing methods can handle these difficulties reliably. The proposed framework employs bridge engineering knowledge that mimics the intelligence of human modellers to detect and model reinforced concrete bridge objects in imperfect point clouds. It directly produces labelled 3D objects in Industry Foundation Classes format without generating low-level shape primitives. Experiments on ten bridge point clouds indicate the framework achieves an overall detection F1-score of 98.4%, an average modelling accuracy of 7.05 cm, and an average modelling time of merely 37.8 seconds. This is the first framework of its kind to achieve high and reliable performance of geometric digital twin generation of existing bridges

    Generating bridge geometric digital twins from point clouds

    Get PDF
    The automation of digital twinning for existing bridges from point clouds remains unresolved. Previous research yielded methods that can generate surface primitives combined with rule-based classification to create labelled cuboids and cylinders. While these methods work well in synthetic datasets or simplified cases, they encounter huge challenges when dealing with real-world point clouds. The proposed framework employs bridge engineering knowledge that mimics the intelligence of human modellers to detect and model reinforced concrete bridge objects in imperfect point clouds. Experiments on ten bridge point clouds indicate the framework can achieve high and reliable performance of geometric digital twin generation of existing bridges.This research is funded by EPSRC, EU Infravation SeeBridge project under Grant No. 31109806.0007 and Trimble Research Fun

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Automated segmentation and reconstruction of structural elements for indoor multi-level room environment

    Get PDF
    3D laser scanners provide accurate as-built conditions for the surrounding environment in the form of 3D point cloud data. Although this technology has had high attention from the construction industry for the as-built documentation of buildings, the reconstruction process, especially identification and segmentation of the building elements, still has manual and labor-intensive tasks leading to time-consuming and human errors. In addition, it has not reconstructed the building elements successfully yet in multi-level building spaces. In an effort to address these issues, this research proposes an automatic 3D reconstruction framework that identifies, segments, and reconstructs vertical and horizontal building elements from the point clouds of multi-level building spaces. The proposed framework composes of: (1) identifying locations, diameters, lengths and the number of vertical building elements using Hough line and circle transform; (2) comparing the dimensions of the walls to determine single- or multi-level building spaces; (3) developing the region of interest defined by the building codes; (4) implementing plane RANSAC for not only segmentation of the vertical building elements but also identification and segmentation of horizontal building elements; and (5) reconstructing the segmented building elements into simple forms. The effectiveness of the proposed methodology has been validated with high accuracy and low deviation in three different building spaces at Concordia University, Montreal, Canada
    • …
    corecore